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The dimensions 2, 8 and 24 play significant roles in lattice the-
ory. In Clifford algebra theory there are well-known periodicities
of the first two of these dimensions. Using novel representations of
the purely Euclidean Clifford algebras over all four of the division
algebras, R, C, H, and O, a door is opened to a Clifford algebra
periodicity of order 24 as well.

Introduction: Bott, Clifford Algebras, Lattices, and Nota-
tion

There are well-known periodicities in Clifford algebra (CA) theory of orders 2, 4,
and 8 (see [1] for an introduction to Bott periodicity in the CA context, and [2]).
These periodicities go hand-in-hand with matrix representations of CAs over the
R (real numbers), C (complex numbers), and H (quaternion algebra). In most
discussions of CA representations the last division algebra in this sequence (the
octonions, O), is left out.

In lattice theory the remarkable 24-dimensional Leech lattice ([6]) can be
nicely represented in (O, O, O), the 3-dimensional space with octonion compo-
nents, so 24-dimensional over R (see [3], [4], [5])-

Our goal here is to demonstrate that by exploiting the octonion algebra,
O, in CA representation theory a periodicity of order 24 arises, providing yet
another link of the algebra O to the dimension 24.

My introduction to the mathematics of both CAs and division algebras -
specifically the real numbers R, complex numbers C, quaternions H, and oc-
tonions O - is [2]. Note: notations have evolved since then, and CL(p, q) will
denote the CA of a p,q-pseudo-orthogonal space with metric signature, p(+),
q(-)-

I use the following matrix notations:
the algebra of n X n matrices over the division algebra K.
2K (n)

the block diagonal 2n x 2n matrices over K(n) : (so 2n2-dimensional). So, for
example, elements of K(2n) take the form

[l ],



and the block diagonal elements of 2K(n) take the form
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In particular, given this basis for R(2),
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we have this as a basis for 2R,
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(All matrices will be dispensed with shortly.)
Further, for any algebra K, let

K; and K and K4

denote the algebras of all actions of K on itself from the left, the right, and both
sides, respectively. In the case of the octonions this requires nested actions due
to nonassociativity (see [7] and [5]).
I shall restrict my focus here to the sequences of CAs, CL(k,0) and CL(0, k).
Since
CLp+1,q+1)~CL(Pp,q) @R(2),

nothing is lost by this restriction of focus (and what I intend to do only works
on these ends).
Consider the CA isomorphisms in Table 1 (derived from [2]):

Table 1: Euclidean Clifford Algebra Isomorphisms

k CL(0,k) cL(k,0)
0 R

1 C ’R

2 H R(2)
3 ’H C(2)
4 H(2)

5  C4) 2H(2)
6 R(8) H(4)
7 2R(8) C(8)
8 R(16)

Just to clarify,
CL(4,0) ~CL(0,4) ~ H(2),

so I collapse those two isomorphisms to the center of the table.



Of particular importance,
CL(8,0) ~CL(0,8) ~R(16) ~ CL(0,0) ® R(16).

This is the first example of Bott periodicity of order 8 in the CA context. In
general,
CL(k+8,0)~CL(k,0)® R(16),
CL0,k+8)~CL(0,k) ® R(16).

Bott without Matrices

However, we can dispense with all matrix algebras by making use of split versions
of the division algebras. Bases for C, H and O are

C: {1, i}
H: {oo=1, ¢1, ¢, ¢3};
O: {eg:=1, e1, ez, e3, e, €5, €5, €7}

H is noncommutative, but associative, and its multiplication table invariably
begins with (and is determined by),

q1492 = —q291 = g3-

The multiplication table for O is determined by specifying bases for 7 quater-
nionic subalgebras. Specifically, the most elegant of these has quaternionic
triples given schematically by the 7 triples,

{€1+k7 €24k, €4+k}7

k = 0 to 6, subscripts modulo 7, from 1 to 7. So, set k = 5, yielding the
quaternionic triple:
€gE7r — —€7€g = €9.

(See [5] for multiplication tables and much more).

We now need a new copy of the complex algebra, and we’ll denote its imagi-
nary unit ¢ (so 2 = —1, and ¢+ commutes with everything, but it is not the same
as our original complex unit 7). Then bases for split versions of those division

algebras (using the multiplication tables above) are

C: {1, ul;
H: {0=1 a, g, g}
O: {ep:=1, ey, ea, tes, eq, tes, leg, Ler}

(although these are in fact real algebras, they are no longer division alge-
bras; also, just to be clear, this split version of the octonion algebra requires
{e1,€2,e4} to be a quaternionic triple, so it should be clear that these bases are
not unique in the quaternion and octonion cases; this is not important).



We rid ourselves of all matrix algebras by making use of the following iso-
morphisms and equivalencies:

C~2R
HZHLZHR
H~H; ~Hp~R(2)
H?2~H2~H, ~R(4)
OL:ORZOA:OL:C)R:OAZR(S)

In this, and in what follows, it is understood that K" ;= K® K ® ... ® K, where
there are n distinct copies of K on the righthand side (see [7] and [5]).

With these isomorphisms in hand I want to replace the Porteous table of
CA isomorphisms above by rewriting it more schematically, using some different
isomorphisms, and without matrices:

Table 2: Euclidean Clifford Algebra Isomorphisms without Matrices

CL(0.k) k CL(k,0)

R 0 R
C R 1 R C
Hp, R 2 R H,
C H R 3 R H, C
H, H; R 4 R H, H;
C H;, H. R 5 R H, H; C
H;, H, H. R 6 R H, H;, H,
C H, H, H. R 7 R H, H;, H, C
H: 8 Hi

Complete by putting ® between algebras in CL(0, k) and CL(k,0) columns.

We read from this table, for example, that

CL(0,6) ~ Hy, ® Hr, ® H ® R,
CE(G,O) ~H;, ®H;  H, ® R.

In the second line above the pieces of CL(6,0) are presented in reverse order to
highlight the major feature of this table: CL(k,0) and CL(0, k) are ”split duals”
when represented like this. That is, to get CL(k,0) from CL(0,k) (or CL(0, k)
from CL(k,0)), replace all its split parts by not split versions (so Hy — Hy),
and replace all not split versions with their split counterparts (so H;, — H L)

Of course, these representations are not unique. For example, using the
octonion algebra we get

CL(0,6) ~ Oy.



Interestingly, R
OL ~ OL:

so the octonions cannot be exploited in this split duality picture as simply as C
and H, but we shall see that they do have a part to play.

There are some striking periodicities in the table above. Modulo 2 we see that
going from k = 2n to k = 2n + 1 we alternately add C or C, which depending
on if we are looking at the CL£(0, k) column, or CL(k,0). And modulo 4 we see
that

CL(0,4n) ~ CL(4n,0), n > 0.

Modulo 8 is the big periodicity, related to what is known as Bott periodicity.
In this context we first see that at k = 8 there is a kind of algebraic collapse, or
simplification, in the representation. But also,

CLO0,k+8) ~ CL(0, k) @ CL(0,8),
CL(k +8,0) ~ CL(k,0) ® CL(0,8).

This kind of order 8 periodicity applies as well to CL(p, ¢), with neither p nor
q equal to 0, but I'm not interested in that here. However, in that case we lose
the split duality. For example, CL(1,1) ~ Hy,, which is not self-dual.

Lattices and Dimensions 1, 2, 8 and 24

I accumulated most of my ideas (and what I know) about lattice theory and
sphere packings in [5]. My interest in the Leech lattice, specifically, derives from
[6], and it relates to my investigations into the roles exceptional mathematical
objects, like the division algebras, play in theoretical physics ([7], [5], [10]).
Conway and Sloane make it abundantly apparent that the Leech lattice satisfies
a great many criteria for exceptionality in this notoriously complex field.

One of the leaders in the field is Henry Cohn who wrote a paper summa-
rizing a recent breakthrough [8]. T’d like to share a few quotes. The initial
breakthrough, the work of M. S. Viazovska, related to the sphere packing prob-
lem in 8 dimensions [9]. She proved that Es (8-dimensional laminated lattice,
also denoted Ag) is the densest sphere packing in 8 dimensions. Cohn says:

No proof of optimality had been known for any dimension above
three, and Viazovskas paper does not even address four through
seven dimensions.

Cohn and collaborators then applied Viazovskas method to prove the Leech
lattice (Az24) is the desnsest packing in 24 dimensions. And again, their work
skirts all the intermediate dimensions, 9 to 23. Cohn says:

Unfortunately, our low-dimensional experience is poor preparation
for understanding high-dimensional sphere packing. Based on the
first three dimensions, it appears that guessing the optimal packing
is easy, but this expectation turns out to be completely false in high
dimensions.



The sphere packing problem seems to have no simple, systematic
solution that works across all dimensions. Instead, each dimension
has its own idiosyncracies and charm. Understanding the densest
sphere packing in R® tells us only a little about R” or R?, and
hardly anything about R'0.

Aside from R® and R?*, our ignorance grows as the dimension in-
creases. In high dimensions, we have absolutely no idea how the
densest sphere packings behave. We do not know even the most ba-
sic facts, such as whether the densest packings should be crystalline
or disordered. Here ”do not know” does not merely mean ”cannot
prove,” but rather the much stronger ”cannot predict.”

What’s going on here? Why are dimensions 8 and 24 so amenable to proof,
and no other high dimensional lattice (none; not one)? The laminated lattices
in dimensions 1 and 2 are nice, but the hellish complexity so common in lat-
tice theory begins in dimension 3, and only disappears in dimensions 8 and 24
thereafter.

There are four division algebras associated with parallelizable spheres. These
occur in dimensions

1, 2, 4, 8.

And now we have a new finite sequence of exceptional dimensions revolving
around lattice theory:
1, 2, 8, 24.

Taking these four numbers and dividing by the previous 4, we get
17 17 27 37

the beginning of the Fibonacci sequence (I mentioned this stuff in [5]). (This
could be mere coincidence, what is in contemporary mathematical parlance
referred to as moonshine ([11]).)

One more word about the dimensions 1, 2, 8 and 24. Cohn and Elkies ([8])
developed upper bounds (linear programming bounds) for sphere packings in &
dimensions. These bounds vary smoothly, unlike the actual densities of sphere
packings that tend to bounce about in a distinctly discontinuous manner. There
are four dimensions where the maximal known lattice density in any dimension
achieves this upper bound (or appears to to several significant figures): 1, 2, 8
and 24.

Split Dual Clifford Algebra Table up to k = 24

Let’s take a look at the split dual CA table introduced above, but now expanded
to k = 24:



Table 3: Clifford algebra isomorphisms to dimension 24.

CL(0,k) Kk CL(k,0)
R 0 R )
C R 1 R C
HL R 2 R HL
C Hg R 3 R H, C
H;, Hg R 4 R H, H.
C I:IL HL R 5 R I:IL I_IL p
H;, H; H; R 6 R H; H; H;
C H, H;, Hg R 7 R H, H, H, C
H} 8 H}
C H} 9 HY C
. Hg H} 10 H} Hy,
C Hp H} 11 H} H, C
H;, Hp H} 12 H} H, H,
C H; Hg H} 13 H} H, H, C
 Hy Hp Hg H} 14 H} H, H;, H
C H, H, H, H} 15 H} H;, H;, H, C
HS 16 HS i
C H} 17 H} C
- Hg H} 18 H} Hy,
C Hg HS 19 HS H, C
H;, Hp HS 20 HY H, Hp
C H; H; H} 21 H} H; H; C
~ H, H, H, H% 22 HS H, H;, H,
C H, H;, H, HS 23 HS H;, H;, H, C
(0} 24 (033

This table makes the order 8 periodicity very pronounced. At every multiple
of 8 there is a kind of algebraic collapse/simplification, after which we start
adding things in the same way as we did previously. Keep in mind that few of
these representations are unique. For example, at k = 16,

HY ~H} ~H,® 02.

So the octonion algebra could have been introduced before k = 24.

However, 24 is the first dimension for which CL(0, k) ~ CL(k,0), and both
can be represented by tensored copies of Op, (necessarily the same). There is a
theme running through this mathematical realm that has arisen elsewhere (see,



for example, [5]):
H} ~CL(8,0) ~ CL(0,8),

0% ~CL(24,0) ~ CL(0,24).

That is, the quaternions are associated with dimension 8, and the octonions
with dimension 24.
[Word of explication: 24 is the smallest dimension k for which

CL(k,0) ~ CL(0, k),

and both can be represented purely in terms of Oy, (O%). The first dimension
in which any Clifford algebra can feature the full Oy in its representation is
n = 6. And the first dimension in which all CL(p, q) can exploit Oy, as part of
their representations is p + ¢ = 8.

24 = LCM(6,8).

LCM is the least common multiple.]
Let’s take a look at a 1-vector basis for the Clifford algebra CL£(24,0) repre-
sented by O%. We need four copies of O, and we’ll denote their bases by

Meq, a=0,...,7, m=1,2,3,4.

This is the CL£(24,0) 1-vector basis I came up with (p = 1, ..., 6; multiply across
rOwS):

1 2 3 4
€Lp €r7 €ro €ro
1 2 3 4
€ro €Lp €Lt €ro
1 2 3 4
€r7 €ro €Lp €ro
1 2 3 4

err “err “err “erLp
This gives us 24 anti-commuting elements of O} (6 for each row). The product
of all 24 is
+lerrerlerrters.
Interestingly, if we replace O by H (that is, H ), and build a similar basis

for a Clifford algebra using quaternions instead of octonions (r = 1,2 below),
we get

1 2 3 4
qdrr qrL3 qro qro
1 2 3 4
qro  “49Lr “4L3  4Lo
1 2 3 4
qrL3 qrLo qrLr qrLo
1 2 3 4

qr3 qr3 qL3 qrr

which is a basis for CL(8,0). So the octonions are associated with CL£(24,0),
and the quaternions with CL(8,0), at least within this context.



Lattices, Clifford Algebras, Periodicity

The question is: is this order 24 algebraic collapse to a product of just octo-
nions (left actions) meaningful? It recurs at every dimension 24m, m a positive
integer, so it is periodic.

Topologically Bott periodicity has to do with homotopy groups and the
sequences of classical Lie groups, orthogonal, unitary and symplectic. In this
context the primary kinds of periodicities that arise are of order 2, 4 and 8.

In the theory of laminated lattices there are also indications of periodicities
of order 2, 4, 8 and 24 (see [5]). It was this that inspired this look at Clifford
algebra periodicity, and in particular the tantalizing representational collapse
0% ~CL(24,0) ~ CL(0,24). At dimension 24m you get the collapse

O™ ~ CL(24m,0) ~ CL(0,24m)

so at least in the Clifford algebra context there is an algebraic periodicity of
order 24, as well as 8 (which is another manifestation of Bott periodicity).

The question naturally arises: is there a topological periodicity of order 24
associated with this algebraic periodicity (as there is of order 8)? Can this
question even be answered given our present mathematical machinery? Is this
more than just moonshine? I suggest it is much more.
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