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Invariance groups and multiplets associated with resolutions of the identity of
tensored division algebras correspond to groups and multiplets occuring in

particle physics.



The real complex division algebras with unity are the complexes C, quater-
nions H, and octonions O. Being division algebras they contain no divisors of
zero (if x, y ∈ K a division algebra, and xy = 0, then x = 0 or y = 0). Therefore
they can contain no subsets of orthogonal idempotents (projection operators),
and there are no nontrivial resolutions of the identity.

Tensor products (over the reals R) of pairs of these division algebras are not
themselves division algebras, and their identities admit resolutions into sets of
nontrivial, orthogonal primitive idempotents. Using these idempotents we can
resolve the tensor product algebras themselves into orthogonal subspaces.

Like the division algebras, these tensor product algebras can be viewed as
the spinor spaces of Clifford algebras (generated from the algebra of actions of
an algebra on itself). The 2-vectors of these Clifford algebras generate the in-
variance group of an associated pseudo-orthogonal space, and a subgroup of this
group will leave invariant the spinor subspaces associated with the resolution
of the identity of the spinor space itself (the original tensor product algebra).
That is, we have spinor spaces that are also algebras; the algebras admit reso-
lutions of their algebra identities; the projection operators of these resolutions
decompose the spinor space into orthogonal subspaces; and our job is to find
the invariance groups of some of these decompositions.

For example, let S = C ⊗ O. The imaginary unit of C is denoted i, and
the 7 imaginary units of O are denoted ea, a = 1,...,7. From i and some unit
element in the imaginary subspace of O (conventionally chosen to be e7) we can
construct a pair of orthogonal primitive idempotents that resolve the identity
of S. Define

ρ± =
1
2
(1 ± ie7). (1)

A resolution of the identity into a set of orthogonal projection operators also
resolves the algebra itself into orthogonal subspaces. In this case there are four:

S++ = ρ+Sρ+; S+− = ρ+Sρ−; S−− = ρ−Sρ−; S−+ = ρ−Sρ+. (2)

These subspaces have an invariance group to be determined below.
C, H, O and S are the spinor spaces of some Clifford algebras. Let CL(p, q)

be the Clifford algebra of of the pseudo-orthogonal space with signature {p(+),
q(-)}. For any algebra K let KL be the algebra of all left actions of K on itself,
KR the algebra of all right actions, and KA the algebra of all left, right and
combined actions. Let Mn(K) = n×n matrices over K. Then

• OL, OR and OA are identical, isomorphic to M8(R) � CL(0, 6);
64-dimensional bases are of the form 1, eLa, eLab, eLabc, or 1, eRa, eRab, eRabc,
where, for example, if x ∈ O, then eLab[x] ≡ ea(ebx), and eRab[x] ≡
(xea)eb (see [1]);

• HL and HR are distinct, both isomorphic to H � CL(0, 2);
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• HA is isomorphic to M4(R) � CL(3, 1);

• CL, CR and CA are identical, isomorphic to C � CL(0, 1) (so we only
need use C itself);

• and SL, SR and SA are identical, isomorphic to M8(C) � CL(7, 0).

The elements {ieLa, a = 1, ..., 7} are a natural 1-vector basis for SL = SA �
CL(7, 0). In this case the 2-vector basis is the set of 21 distinct {eLab, a �= b}
(note: a �= b implies eLab = −eLba, so these elements are not distinct). These
elements form a basis for the Lie algebra so(7) and generate the Lie group
Spin(7).

The elements of so(7) that leave the S±± invariant must commute with the
both the ρ±, the one acting on S from the left and the one from the right. Define
the idempotents ρL± = 1

2 (1±ieL7) and ρR± = 1
2(1±ieR7), so S±± = ρL±ρR±[S].

If g ∈ so(7) leaves each of the S±± invariant, then

gρL±ρR± = ρL±ρR±g = ρL±ρR±gρL±ρR±

(the last equality because the ρ’s are idempotents). So the subalgebra of so(7)
leaving the S±± invariant is ρL±ρR± so(7) ρL±ρR±, and it was shown elsewhere
([2]) that

ρL±ρR±so(7)ρL±ρR± � {u(1) × su(3)}ρL±ρR±. (3)

With respect to the resulting Lie group SU(3), S++ transforms as a singlet,
S−− an antisinglet, S+− as a triplet, and S−+ as an antitriplet.

Define D = C⊗H. As was true of S, this new combination is not a division
algebra and admits a similar resolution of its identity. Let qk, k = 1, 2, 3, be a
basis for the imaginary subspace of H. Define

λ± =
1
2
(1 ± iq3), (4)

and with these decompose D into four orthogonal subspaces

D++ = λ+Dλ+; D+− = λ+Dλ−; D−− = λ−Dλ−; D−+ = λ−Dλ+. (5)

As was done above for S, we’re interested in the subgroup of the group
generated by the bivectors of DA � M4(C) � CL(0, 5) (note: DA is also
isomorphic to the Dirac algebra) that leave the subspaces D±± invariant. In
this case, similar to the case above,

λL±λR±so(5)λL±λR± � {so(2) × u(1)}λL±λR± (6)

(yes, so(2) � u(1), but below we are going to associate the so(2) with a space-
time rotation, and u(1) with a spinor transformation).
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Define T = C ⊗ H ⊗ O. The identity of this algebra admits a more com-
plicated resolution. Let �x and �y be arbitrary imaginary unit quaternions, and
define λ0 = 1

2(1 + i�x), λ1 = 1
2(1 − i�x), λ2 = 1

2 (1 + i�y), and λ3 = 1
2 (1 − i�y).

Define (see [1])

∆0 = ρ+λ0, ∆1 = ρ+λ1, ∆2 = ρ−λ2, ∆3 = ρ−λ3. (7)

These orthogonal primitive idempotents resolve the identity of T, and with
them we can decompose T into 16 orthogonal subspaces:

Tmn = ∆mT∆n, m, n = 0, 1, 2, 3 (8)

(note: the nonassociativity of O is not an issue here). T is the spinor space of
TA � M32(C) � CL(11, 0). However, rather than find the subalgebra of so(11)
that leaves the Tmn invariant, we’ll jump ahead to the point of this exercise,
which is to consider 2 × 2 matrices over TA. Before we do, it is worth pointing
out that the form of the ∆m is thought by myself to be as general as possible,
while maintaining certain consistency properties (see [1]):

(∆mT)∆n = ∆m(T∆n);

∆m(∆nT) = (∆m∆n)T.

It is conjectured but not proven that no other inequivalent resolution of the
identity of T exists that satisfies these conditions.

In [1] we were interested in the associated algebra of actions TL � M16(C) �
CL(0, 9), and the 2 × 2 matrices over this algebra, M2(TL) � M32(C) �
C ⊗ CL(1, 9). Here we’ll focus our attention on

M2(TA) � M64(C) � CL(12, 1).

Its spinor space is 2T, the space of 2 × 1 column matrices over T. Like T, this
can be decomposed into 16 orthogonal subpaces:

2Tmn = ∆m(2T)∆n, m, n = 0, 1, 2, 3. (9)

We’ll use an explicit representation of CL(12, 1). First we need a basis for
M2(R):

ε =
(

1 0
0 1

)
; γ =

(
0 1
−1 0

)
; β =

(
0 1
1 0

)
; α =

(
1 0
0 −1

)
.

Our basis of 1-vectors for CL(12, 1) consists of the 13 elements:

γ, eL7qLkβ, ieLpβ, iqRjα, k, j = 1, 2, 3, p = 1, ..., 6. (10)
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(Note: following what was done in [1], the elements γ, eL7qLkβ are iden-
tified with normal space-time, and the six ieLpβ are extra dimensions carrying
su(3) charges. The three iqRjα are new extra dimensions and will be seen to
carry isotope su(2) charges.)

The 2-vectors (the Lie algebra so(12,1)) arising from these 1-vectors are:

(Noncompact generators) eL7qLkα, ieLpα, iqRjβ,

(Compact generators) qLkε, eLpqε, qRjε,

ieLp7qLkε, ieL7qLkqRjγ, eLpqRjγ (11)

(j,k = 1,2,3, and p,q = 1,...,6).
We want to find the subalgebra of so(12,1) that leaves the 2Tmn invariant,

but we’re going to decompose 2T a little further with the chiral projectors,

η± =
1
2
(1 ± α).

Define
2Tmn± = η±(2Tmn). (12)

Ok, let’s dig into so(12,1) in steps. We’re looking to find the subalgebra

η±∆Lm∆Rnso(12,1)∆Rn∆Lmη±

= λLmλRnη±ρL±ρR±so(12, 1)ρR±ρL±η±λRnλLm, (13)

which maps the subspace 2Tmn± to itself (note: the ±’s on one side of so(12,1)
are independent, but linked to the corresponding ±’s on the opposite side of
so(12,1)). We’ll do this in steps, starting with η±so(12,1)η±. Since
η±(γ or β)η± = η±η∓(γ or β) = 0, we are left with generators,

(Noncompact generators) eL7qLkα, ieLpα,

(Compact generators) qLkε, eLpqε, qRjε,

ieLp7qLkε. (14)

Since the generators qRjε commute with the other remaining generators, we’re
left with

η±so(12,1)η± = (so(9,1) × su(2))η±. (15)

Our penultimate step is:

ρL±ρR±[(so(9,1) × su(2))η±]ρL±ρR±

= (so(3,1) × u(1) × su(2) × su(3))η±ρL±ρR± (16)

(note: ρL±(eLp or eLp7)ρL± = ρL±ρL∓(...) = 0, so the generators ieLpα and
ieLp7qLkε are killed by this reduction, leaving us with so(3,1) × so(6) {from the
eLpqε} × su(2) {from the qRjε}, and ρR± so(6) ρR± reduces to u(1) × su(3)
(see [2] and above). Obviously at this point, if one has not done so already, one
might be thinking that here we have a bizarre coincidence, since this looks a lot
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like groups that play a dominant role in the real world. Well well, how bizarre,
how bizarre.

Nesting this result inside λLmλRn...λLmλRn reduces so(3,1) to a boost, and
a space rotation about the axis of the boost, and it reduces su(2) to u(1), leaving
us with u(1) × u(1) × su(3) as the final internal symmetry, which is the exact
part of the standard symmetry.

As a mathematical curiosity [3] we’ll use this machinery to connect to the
exceptional group E6. We start by noting that

M2(TA) � M64(C) � CL(0, 13).

Below is a 1-vector basis for this CL(0, 13):

γ, ieL7qLkβ, eLpβ, qRjα, k, j = 1, 2, 3, p = 1, ..., 6. (17)

It is an obvious modification of the 1-vector basis of CL(12, 1), and its corre-
sponding 2-vector (so(13)) basis is:

ieL7qLkα, eLpα, qRjβ,

qLkε, eLpqε, qRjε,

ieLp7qLkε, ieL7qLkqRjγ, eLpqRjγ (18)

(j,k = 1,2,3, and p,q = 1,...,6).
As we did above, we’ll use projection operators to simultaneously reduce

the 128-dimensional spinor space of this Clifford algebra (2T), and to find the
subalgebra of so(13) leaving the reduced spinor subspaces invariant - but we
won’t go quite as far. The first reduction is (2T) −→ η±(2T), which breaks
(2T) into two 64-dimensional subspaces. The corresponding reduction on so(13)
is η±so(13)η±. The surviving 2-vectors are

ieL7qLkα, eLpα,

qLkε, eLpqε, qRjε,

ieLp7qLkε (19)

(each with an η±). This is a basis for the Lie algebra (so(10)×su(2))η±, where
as before the three elements qRjε are a basis for su(2).

Each of the two 64-dimensional spinor spaces η±(2T) is an su(2) doublet
of 32-dimensional so(10) spinors. It is widely known that the Lie algebra of
the exceptional group E6 can be formed in a natural way from so(10), a 32-
dimensional spinor space, and a copy of u(1). Using the projection operators
λ± = 1

2(1± iq3) and their right-action counterparts, λR± = 1
2(1± iqR3), we can

project a pair of 32-dimensional so(10) spinors η±(2T)λ± = λR±η±[2T] from
the su(2) doublet η±(2T). This is associated with the Lie algebra reductions:

λR±η±so(13)η±λR± = λR±(so(10) × su(2))η±λR± = (so(10) × u(1)))η±λR±.
(20)
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In each of four reductions we are left with a Lie algebra so(10)×u(1) acting on a
32-dimensional spinor space, and from each of these collections we can construct
a Lie algebra for E6.

Although all generators are compact in this case, were E6 of this form re-
quired to make a reasonable physics model, it is interesting to note that it’s
presence is associated with the breaking of su(2) down to u(1).
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