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A carefully constructed explanation of my connection of the real normed
division algebras to the particles, charges and fields of the Standard Model
of quarks and leptons provided to an interested group of attendees of the
2nd Mile High Conference on Nonassociative Mathematics in Denver in
2009.06.

Spinors: a la moi

In this article the spinor is at the root of everything. My notion of what a spinor is
derives from Ian Porteous’s book Topological Geometry which I was directed to some
30 years ago. Ian presented a table of representations of universal Clifford algebras
of p-time:q-space dimensional spacetimes in terms of the first three real normed di-
vision algebras: R, C, and H (the remaining division algebra, the octonions, O, will
enter shortly). By the way, I will also employ Ian’s notation K(n) to be the algebra of
n×n matrices over an algebra K (by a purer breed of mathematicians this is denoted
Mn(K), I believe, which tells you how comfortable I am with that notation).

Let CL(p, q) be the Clifford algebra of p,q-spacetime (actually, timespace), then
any of Ian’s representations can be derived from the sequences for p = 0,1,2,3,..., and q
= 0 (line 1), and the sequence for p = 0 and q = 0,1,2,3,... (line 2),

R R2 R(2) C(2) H(2) H2(2) H(4) C(8) R(16) R2(16) ...
R C H H2 H(2) C(4) R(8) R2(8) R(16) C(16) ...

and the rule
CL(p+ 1, q + 1) = CL(p, q)⊗R(2).

(There is also a periodicity (Bott) of order 8 indicated in the rows above. Also, R(2),
being isomorphic to CL(1, 1), provides a great way of adding time and a transverse
space dimension to a pure (longitudinal) space Clifford algebra.)

Some things to point out in particular:
• In each case we can find a set of p+q anticommuting elements of CL(p, q) (the 1-
vectors) the squares of which are ±I , with I the identity of CL(p, q) (p +, and q -);
• The product of these p+q anticommuting 1-vectors is not a real multiple of the iden-
tity (this is the ’universal’ part of ’universal Clifford algebra’);
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• The spinor space of CL(p, q) is the obvious set of n×1 column matrices over R, C,
or H, on which our respective representations of CL(p, q) would most naturally act via
left matrix multiplication;
• If the underlying division algebra is H, then multiplication on the spinor space by
elements of H from the right is an algebra of actions on that space that is not accounted
for by the elements of CL(p, q), and so it is internal with respect to those external Clif-
ford algebra actions (in the sense that isospin SU(2) is an internal symmetry, and in
what follows it is from this right action by H that isospin SU(2) arises in the form of
the subset of unit elements, which is multiplicatively closed);
• And finally, the set of elements generated by taking the commutators of pairs of 1-
vectors is the set of 2-vectors, and with respect to the commutator product this set is
isomorphic to the Lie algebra so(p, q) ' spin(p, q).

One last thing to note: each of the n components of these n×1 spinor columns is an
element of R, C, or H, a division algebra. Conventionally CL(3, 0) is represented by
the algebra C(2), but

C(2) ' P ≡ C⊗H,

the complexified quaternions. These two versions of CL(3, 0) have different spinor
spaces. In the former case the spinor space is the 4-dimensional (over R) and consisting
of 2×1 complex matrices; and in the latter case the spinor space is the 8-dimensional
1-component set C ⊗ H itself. In this latter case the algebra of actions of H multi-
plication on a spinor from the right is again not accounted for and commutes with the
Clifford algebra actions. In addition, in this case the single spinor component is not an
element of a division algebra, but of C ⊗H, which has a nontrivial decomposition of
its identity into a pair of mutually orthogonal idempotents that sum to 1. More on this
kind of thing very soon: it is the key to almost everything.

Octonions as Spinors

O is an 8-dimensional real algebra, and despite its nonassociativity it can be incor-
porated into this Clifford algebra and spinor scheme. First some notation:

∀ x,w ∈ O, Lx[w] = xw, Rx[w] = wx.

However, although this notation is somewhat conventional, in all my previous work
I’ve used the following notation (thereby avoiding subscripts on subscripts):

xL ≡ Lx, xR ≡ Rx.

In particular, I use a basis ea, a = 0, 1, ..., 7, for O, with e0 = 1 the identity, and

{e0, e1+k, e2+k, e4+k}

is a basis for a quaternionic subalgebra for all integers k, where the index summation
is modulo 7, from 1 to 7. Define

eLab...c ≡ LeaLeb ...Lec , eRab...c ≡ Rec ...RebRea ,
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(note reversal of indices in second case), and let OL and OR be the algebras spanned
by these respective sets of left and right actions. Finally, and most importantly,

OL = OR ' R(8),

so these are each the full algebras of endomorphisms on 8-dimensional O. Any element
of OL can be expressed as a linear combination of elements of OR, and visa versa.
More on this later.

So,
OL ' R(8) ' CL(0, 6),

and the spinor space of this representation of CL(0, 6) as OL is just O itself, which,
unlike R8, has a natural multiplicative structure. The spinor space itself is a division
algebra. (Note: OL is trivially associative.) We can represent a basis for the Clifford
algebra 1-vectors in this case as

eLp, p = 1, 2, 3, 4, 5, 6.

The set of 2-vectors is then spanned by

eLpq, p, q ∈ {1, 2, 3, 4, 5, 6}, p 6= q,

and given the commutator product this is the Lie algebra so(6). The 6-vector is

p=6∏
p=1

Lep = Le7 =

p=6∏
p=1

eLp = eL7.

John Huerta (John Baez’s student) very kindly pointed out a few egregious errors
in the original version of this article. He asked for an explicit presentation of my
multiplication table. This is how I write it for myself whenever I need a quick reference:

124
235
346
457
561
672
713

These are the 7 sets of ”quaternionic” index triples. For example, from this I deduce
that e6e1 = −e1e6 = e5. In general, if a and b are distinct indices from 1 to 7, then
eaeb will be equal to±ec for some other index c, the sign positive if b−a is a power of
2, and negative otherwise (b− a taken modulo 7, from 1 to 7, so 2-5 = 4, and therefore
e5e2 is positive (e3)).

3



Complexified Octonions as Spinors

Define
S = C⊗O.

Since OL = OR, and trivially CL = CR, the algebra of left or right actions of S on
itself is

SL = SR = C⊗OL ' C⊗R(8) = C(8) ' CL(7,0).

Quickly then, so we can get to the res, SL viewed as the Clifford algebra CL(7, 0) has
the following natural identifications:

1-vectors: ieLa, a ∈ {1, ..., 7},
2-vectors: (so(7)) eLab, a, b ∈ {1, ..., 7}, a 6= b,
...

7-vector
∏a=7
a=1 iLea = −ieL1234567 = i.

The spinor space in this case is S itself, and as was true of the previous case, this
spinor space has an algebraic structure of its own. However, in the previous case the
spinor space, O, was a division algebra; S is not, and it admits a nontrivial resolution
of its identity into a pair of orthogonal projectors (idempotents, as long as everything
is alternative). These are

ρ± =
1

2
(1± ie7)

(this selection is clearly not unique, but dates back almost 40 years in the literature,
and is, given my choice of octonion multiplication table, rather natural).

The presence of these projectors means there is a natural (ok, I’m over-using that
word) decomposition of the spinor space S into 4 mutually orthogonal subspaces:

S++ = ρ+Sρ+ = ρL+ρR+[S], 1-d over C
S+− = ρ+Sρ− = ρL+ρR−[S], 3-d over C
S−+ = ρ−Sρ+ = ρL−ρR+[S], 3-d over C
S−− = ρ−Sρ− = ρL−ρR−[S], 1-d over C

where ρL± = 1
2 (1± ieL7), and ρR± = 1

2 (1± ieR7), which provides an expression of
this decomposition in terms of projectors in CL(7, 0).

These four reductions of S into four orthogonal subspaces have corresponding re-
ductions of CL(7, 0) into subalgebras that map the four subspaces to themselves. These
are:

CL(7, 0) −→ ρL+ρR+CL(7, 0)ρL+ρR+ = CLρ(7, 0)ρL+ρR+,
CL(7, 0) −→ ρL+ρR−CL(7, 0)ρL+ρR− = CLρ(7, 0)ρL+ρR−,
CL(7, 0) −→ ρL−ρR+CL(7, 0)ρL−ρR+ = CLρ(7, 0)ρL−ρR+,
CL(7, 0) −→ ρL−ρR−CL(7, 0)ρL−ρR− = CLρ(7, 0)ρL−ρR−,

where the subalgebra CLρ(7, 0) is the same for all four reductions, so we will just look
at the (++)-reduction. (Why are the CLρ(7, 0) the same? In each case the reduction oc-
curs when one of the ρ’s goes through the Clifford algebra. If eL7 (eR7) anticommutes
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with a piece of CL(7, 0), then ρL± (ρR±) will change to ρL∓ (ρR∓) when drawn from
one side of that piece to the other, and when it gets there it will encounter ρL± (ρR±),
and the resulting product is zero, so that piece will be ”reduced” out. So the sign in
ρL± (ρR±) is immaterial.) Note first that

ρL±ρL± = ρL± ⇒ ρL±eLaρL± = eLaρL±, a = 0, 7,
ρL±ρL∓ = 0 ⇒ ρL±eLaρL± = eLaρL∓ρL± = 0, a = 1, ..., 6,
ρR±ρR± = ρR± ⇒ ρR±eRaρR± = eRaρR±, a = 0, 7,
ρR±ρR∓ = 0 ⇒ ρR±eRaρR± = eRaρR∓ρR± = 0, a = 1, ..., 6.

Therefore, of the seven 1-vectors of CL(7, 0), the only one that survives the reduction
to CLρ(7, 0) is ieL7. (Oh, and by the way, ρL± commutes with ρR±.)

However, what we’re really interested in is what happens to the 2-vectors, viewed
as a representation of the Lie algebra so(7). There are 21 elements, eLab, a, b ∈
{1, 2, 3, 4, 5, 6, 7} distinct, but we can divide these into two types: those for which one
of the indices is 7; and those for which neither index is 7. In what follows it will be
understood that any index p, q, r, s ∈ {1, 2, 3, 4, 5, 6}. Ok, so

ρL±eLp7ρL± = ρL±eLpeL7ρL± = eLpρL∓eL7ρL± = eLpeL7ρL∓ρL± = 0,
ρL±eLpqρL± = ρL±eLpeLqρL± = eLpρL∓eLqρL± = eLpeLqρL±ρL± = eLpqρL±,

where the subalgebra of so(7) generated by elements eLpq, p, q ∈ {1, ..., 6} distinct,
is so(6). But we’re not quite done, since we still have to finish the reduction by looking
at ρR±eLpqρL±ρR±. Since the ρL± is irrelevant, we’ll leave it out for now and just
look at the elements ρR±eLpqρR±.

Once again we’re going to divide these 15 index combinations into 2 sets: those
for which epeq = ±e7; and those for which epeq = ±er, r 6= 7. We’ll consider the
latter case first, and there are 12 distinct elements (to within a sign). We need only look
at one, which will be eL12 (note: e1e2 = e4). Recall, OL = OR, so we can express
any element of OL as a linear combination of elements of OR. In particular, given the
multiplication table employed here (and you’ll have to take my word for this, or consult
my book or previous papers):

eL12 =
1

2
(eR4 − eR12 + eR63 + eR57).

Therefore,

ρR±eL12ρR± = 1
2ρR±(eR4 − eR12 + eR63 + eR57)ρR±

= 1
2 (ρR±ρR∓eR4 − ρR±ρR±eR12 + ρR±ρR±eR63 + ρR±ρR∓eR57)

= 1
2ρR±(−eR12 + eR63)

= 1
2 (eL12 − eL63)ρR±.

Note: ρR± commutes with (eL12 − eL63) = (−eR12 + eR63). The other eleven eLpq ,
such that epeq = ±er, r 6= 7, reduce in like fashion when surrounded with ρR±, and
these 12 elements are not linearly independent. For example,

ρR±eL63ρR± = −1

2
(eL12 − eL63)ρR±.
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So, in fact there are only 6 independent elements surviving the reduction (ρR±...ρR±)
of these 12 elements. These are 6 of the 8 elements of the su(3) Lie algebra that
generate an SU(3) subgroup of the Lie group G2, the automorphism group of O, that
leave the unit e7 ∈ O invariant.

The final 3 elements of so(6) we need look at are the eLpq for which epeq = ±e7.
These are

eL13 = 1
2 (eR7 − eR13 + eR26 + eR45),

eL26 = 1
2 (eR7 + eR13 − eR26 + eR45),

eL45 = 1
2 (eR7 + eR13 + eR26 − eR45),

and (I hope this is obvious) ρR± commutes with every term on the right hand side of
these equations, so there is no further reduction achieved at this point. However, we
can take linear combinations of these 3 elements to make it clearer what the overall
structure of ρR±so(6)ρR± actually is. In particular, there are 2 linearly independent
elements we get by taking the differences of these 3 in pairs. Together with the 6
elements we got above, we now have a complete basis for su(3) = span{(eLpq −
eLrs)}, where p, q, r, s ∈ {1, 2, 3, 4, 5, 6}, and epeq = eres. Again, this generates the
SU(3) subgroup of G2 that leaves e7 invariant.

The final element we get by taking the sum of the 3 elements above. In particular,
let

µ =
1

6
(eL13 + eL26 + eL45) =

1

6
(eL7− eL7 + eL13 + eL26 + eL45) =

1

6
(eL7 + 2eR7).

This element commutes with the elements of su(3), and together they constitute a u(3)
subalgebra of so(6), which is a subalgebra of our initial so(7).

In fact, however, we have four variations on this full reduction, each acting nontriv-
ially on only one of the four subspaces of our spinor space S.

u(3)ρL+ρR+ : S++ (su(3) singlet),
u(3)ρL+ρR− : S+− (su(3) triplet),
u(3)ρL−ρR+ : S−+ (su(3) antitriplet),
u(3)ρL−ρR− : S−− (su(3) antisinglet).

And as to µ, it has the following actions on the four subspaces:

µS++ = − i
2S++,

µS+− = + i
6S+−,

µS−+ = − i
6S−+,

µS−− = + i
2S−−.

Anyone familiar with the Standard Model of quarks and leptons will recognize this as
the u(1) hypercharge generator, or what can be interpreted as such. To this point it’s
just pure mathematics.
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Complexified Quaternions as Spinors

The algebras of left and right multiplicative actions of C on itself are identical, a
result of its being both commutative and associative. The algebras of left and right
multiplicative actions of O on itself are also identical, a result of its being neither
commutative nor associative. H, however, in being associative, but not commutative,
is in some ways more complicated than C or O. While HL ' HR, these algebras
are distinct, they commute with each other, and both are isomorphic to H itself. The
algebra of simultaneous left and right actions (HA, ’A’ for ’All’) is isomorphic to R(4),
the algebra of 4× 4 real matrices.

So H alone is the spinor space of HL ' CL(0, 2), where there is an internal SU(2)
arising from HR, with respect to which the spinor space H is a doublet.

But H alone can also be considered the spinor space of HA ' CL(2, 2) ' CL(3, 1),
in which case there is no algebra of internal actions.

Similar statements can be made about P = C ⊗ H. P can be viewed as the
spinor space of PL ' CL(3, 0), which is isomorphic to the Pauli algebra, and where
again HR gives rise to an internal SU(2); or P can be viewed as the spinor space of
PA ' CL(0, 5), which is also isomorphic to the Dirac algebra, C(4).

The primary point I want to make here, one made ad nauseum in previous articles,
is how the relation of P to that internal SU(2) mentioned above differs from the rela-
tionship of S to the internal SU(3) mentioned in the previous section. To make this
easier I’ll look at P2 as the spinor space of PA(2). As usual I define a basis for R(2)
with the following 4 matrices:

ε =

[
1 0
0 1

]
, α =

[
1 0
0 −1

]
, β =

[
0 1
1 0

]
, γ =

[
0 1
−1 0

]
.

PA(2) is isomorphic to the complexification of CL(0, 6), with a 1-vector basis

iqLjγ, qRkβ, j, k ∈ {1, 2, 3}.

The corresponding basis for the set of 2-vectors is

qLjε, qRkε, iqLjqRkα,

which is the Lie algebra spin(6) ' su(4).
I’m going to arbitrarily associate the 1-vectors iqLjγ with Euclidean 3-space, and

the 1-vectors qRkβ with extra dimensions. The first thing I want to do is dimensionally
reduce the 6-dimensional space to just Euclidean 3-space by using the matrix projectors

E± =
1

2
(ε± iγ).

Let’s use the ’+’ projector, and note that

E+iqLjγE+ = iqLjγE+,
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while
E+qRkβE+ = E+E−qRkβ = 0.

At the 2-vector level,

E+qLjεE+ = qLjεE+,
E+qRkεE+ = qRkεE+,
E+iqLjqRkαE+ = 0,

which is spin(4) ' su(2) × su(2), where one of the su(2)s is spin(3) associated
with the Euclidean space, which we’ll denote suL(2) (or just spin(3)); and the other
is internal (relative to 3-space), and we’ll denote it suR(2).

The spinor space, P2, is 16-dimensional, but E+P
2 is 8-dimensional, and relative

to what we have left of the Clifford algebra constitutes an SU(2) doublet of Pauli
spinors. As was the case for the spinor space C ⊗ O, the C ⊗ H parts of this new
spinor space have an algebraic structure, and again admit a nontrivial resolution of the
identity into a pair of orthogonal projection operators. Our choice here is the following:

λ± =
1

2
(1± iq3)

(where qk, k = 1, 2, 3, are the three imaginary quaternionic units, which I hope by now
is obvious). We can use these to further decompose E+P

2:

λ+E+P
2λ+ λ+E+P

2λ−
λ−E+P

2λ+ λ−E+P
2λ−

These 4 spinor components are just single complex numbers (along with the projec-
tors). However (and this is a huge contrast to the C⊗O case), λ± acting as a projection
on the spinor from the left only effects that part of the spinor associated with spin(3),
while λ± projecting from the right pick out the two halves of the suR(2) spinorE+P

2.
My point is to contrast the internal su(3) derived above with this new internal su(2)

associated with HR, so the next step is to pull the action

E+P
2λ± = λR±[E+P

2]

back to the Clifford algebra, which looks like

λR±E+CL(0, 6)E+λR±

(my point is made better by using the Clifford algebra already reduced by E+). Our
remaining three 1-vectors are linear in qLj , which commute with any element of HR,
so these elements remain unchanged by the λR± reduction above. The same holds true
at the 2-vector level for suL(2) ' spin(3). On the other hand,

λR±qRkελR± = 0, k = 1, 2,
λR±qRkελR± = ∓iλR±ε, k = 3.
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That is, λR± reduces the internal su(2) to u(1); it breaks the symmetry.
With C⊗O the projectors left us with u(3), an exact part of the standard symmetry

(Lie algebra) u(1)× su(2)× su(3). This su(2) is not exact, but has a u(1) subalgebra
which is, and this is what we’re left with in the C ⊗ H case. This is not to say that
we have yet a sufficiently developed picture to make the claim that we now have the
standard model, only that the symmetries of that model are inherently a part of this
picture, as is a natural mechanism for yielding an exact u(3) and broken su(2). It’s
right there in the mathematics. See it? Right there ... no, right over there. It’s purple ...
look for something purple. Just to conclude this section: the projectors ρ± projected
from the spinor space C×O entire multiplets (1⊕3⊕1⊕3), while the λR± projected
from an extant su(2) doublet its individual components.

All Three

Define
T ≡ C⊗H⊗O.

This is the spinor space of the Clifford algebras

TL ' CL(0, 9)

and
TA ' CL(11, 0),

where TL uses only HL, and TA uses HA, which includes both HL, HR, and their
combined actions. As I went to the trouble of writing a book largely about T ([1]), and
many articles ([2][3]), I will here summarize the results.

T inherits noncommutativity from H and O, and nonassociativity from O. From
the combination of H and O it also loses alternativity. That is, there are elements x and
y such that x(xy) 6= (x2)y. Worse, there are idempotents x that do not alternate. That
is, there exist y such that

x(xy) 6= (x2)y = xy.

Such idempotents obey the letter of the law (definition) of idempotent, but not its spirit
(intention), which really is an element x of an algebra A satisfying, to begin with,

x(xy) = xy

for all y ∈ A. That is, x is a projection operator. As to T, there a several ways to
resolve its identity into four orthogonal idempotents (∆m, m = 0, 1, 2, 3), but only
one way (I believe), up to automorphism, satisfying for all y in T,

∆0 + ∆1 + ∆2 + ∆3 = 1,
∆m(∆ny) = δmn∆my,
(y∆m)∆n = δmny∆m,
∆m(y∆n) = (∆my)∆n,
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these properties ensuring the ∆m can be treated as a set of orthogonal projection oper-
ators with which we can consistently decompose the spinor space T.

Drawn from the book [1], we make the assignments:

∆0 = 1
4 (1 + i~x)(1 + ie7) = (1

2 (1 + i~x))( 1
2 (1 + ie7)) = λ0ρ+,

∆1 = 1
4 (1− i~x)(1 + ie7) = (1

2 (1− i~x))( 1
2 (1 + ie7)) = λ1ρ+,

∆2 = 1
4 (1 + i~y)(1− ie7) = (1

2 (1 + i~y))( 1
2 (1− ie7)) = λ2ρ−,

∆3 = 1
4 (1− i~y)(1− ie7) = (1

2 (1− i~y))( 1
2 (1− ie7)) = λ3ρ−,

where ~x and ~y are linear in qk, k = 1, 2, 3 and independent (see [1]). The λm are similar
to the λ± defined above, and similar things can be said about them. For example,
they provide a mechanism for breaking SU(2), whereas nothing in the ∆m can break
SU(3). Moreover, the ∆m themselves are elements of T, and they are invariant with
respect to SU(3), but not SU(2). In [1] this helped provide an explanation for the
nonchirality of SU(3) and the chirality of SU(2).

One other thing that occurred to me in Denver. As I see it, theories that require
some sort of representation or other structure to explain the organization of elemen-
tary particles, often do an okay job of this. For example, it was noted long ago, that
SU(3) did great things and the 3 multiplet suggested the existence of quarks, which
are fermions, therefore presumably individually describable to some extent by Dirac
spinors. Well, the SU(3) triplet is not inherently a triplet of Dirac (or Pauli) spinors.
You have to stick that structure on, like a fiber. In our case we start with a spinor -
a more fundamental structure than the inherently bosonic spacetime - and our partic-
ular spinor spaces have associated algebraic structures that give rise to associated Lie
groups and a natural multiplet structure within the spinor. T, for example, is a Pauli
spinor doublet for a 1,9-spacetime in exactly the same way P is a Pauli spinor doublet
for 1,3-spacetime. P can be viewed as a doublet of ordinary Pauli spinors in C2. And
how about the ordinary C2 Pauli spinors in T? There is an entire lepto-quark family
and anti-family of them. T is an example of an all-inclusive hyperspinor, one that car-
ries within its mathematical self the keys one needs to view it within the context of
1,3-spacetime.

Final Repetitive Thoughts

Let Ψ be a T2 spinor with a dependence on 1,9-spacetime, a la [1]. As shown in
that reference, we can easily pick out of this [family]+[antifamily] hyperspinor parts
that are associated with recognizable lepton fields. For example,

ρ+Ψρ+λ0 = ρ+Ψ∆0 −→ Dirac spinor for a neutrino field,

where we know this is a neutrino because it has all the charges a neutrino field ought
to have with respect to U(3) and SU(2). We can make a simple Dirac-like Lagrangian
for these fields (see [1] - it’s more complicated than this):

L = Ψ 6 ∂Ψ,
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where the parametrization of the fields in this case is over 1,9-spacetime. This can be
gauged, and the final result has a really nice property: all allowable interactions can be
read from the real part of L. For example, let ν be the neutrino part of Ψ, ug be the
green up-quark part of Ψ (green, of course, being shorthand for one set of the up-quarks
SU(3) charges, or colors), and W+ be an intermediate vector boson arising from the
gauging of SU(2). Then this term exists in L,

νW+ug,

but it is not in the real part of L, therefore it is not an allowable interaction. No QFT
with Feynman diagrams is needed at this point to determine all the interactions that
can happen. The fields, their charges, the consequent particle identifications, and the
particle interactions, are all inherent in the mathematics of the division algebras within
T (see [1][2][3][4] for much more elaborate discussions of these matters).

And now something you won’t find in the references. There are 3 parallelizable
spheres: S1, S3, and S7, and no others. The parallelizability can give rise to a product
structure on each of these spheres, essentially deriving the subalgebras of C, H and O,
consisting of their unit elements. Then, with these product structures,

T = R⊗ S1 ⊗ S3 ⊗ S7.

I mention this because one might wonder why we need to include C and H, since they
are already contained in O as subalgebras. This is a disease almost all mathematical
physicists have, assigning fundamental significance to human defined structures. C,
H and O, are much more than a series of algebras, they are a series of mathemati-
cal universes, each with very different properties, and for each of these mathematical
universes the corresponding division algebra is just a sign post that says: Enter Here.
Without the inclusion of each of these separate mathematical universes you do not (can
not?) get the 1-to-1 correspondence of the mathematics to the particles, fields, and
interactions that we observe in our physical universe. And if your model does an ex-
cellent job of doing this, then either the universe is playfully perverse, or your model
has T hidden in it, perhaps in some non-obvious way.
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