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In which the binary product algebra of complex numbers, C, is gener-
alized to a ternary product algebra, Cs.

Why?

For decades my explorations into mathematics and physics have been based on the
opinion that mathematics is primary, physics secondary. Mathematics is intellectually
profligate, and its practitioners are occasionally proud of the purity and inapplicability
of their work. This is a good thing. In being less fettered than physics, it has the
potential to generate ideas and objects of no presently perceivable value, but which in
future may be seen by those with an interest in applications as just what they needed
to add flesh to their intuition. Riemann geometry and Lie group theory are outstanding
examples.

For me, initially, it was the real normed division algebras: real numbers, R; com-
plex numbers, C; quaternions, H; octonions, O (although by the time I came on the
scene only H and O were having any difficulty gaining traction in physics). However,
itisn’t the algebras that are special, it’s their dimensions (over R): 1, 2,4 and 8. These
dimensions are associated with those division algebras, with the parallelizable spheres,
the 4 sequences of classical Lie groups, and so much more. They are mathematically
resonant, and I have never had any doubt that our physical reality requires this kind of
seminal resonance in its mathematical underpinnings.

There is another finite sequence of resonant dimensions associated with lattice the-
ory: 0, 2, 8 and 24. The last of these, 24, is the dimension of the Leech lattice, A4,
accounted by those in the know as one of the most special objects in mathematics [1].
Since 24 = 3 x 8, some have pursued representations of A4 over O” [2].

My work in this area was heavily influenced by work I’d done connecting the octo-
nion X-product [3] and XY-product [4] to the 8- and 16-dimensional laminated lattices,
FEs = Agand Ay [5]. I wondered if As4 were also associated with some product, with
luck involving O. But the factor 3 in its dimensionality was problematic, unless, per-
haps, the hypothetical product was ternary. I knew next to nothing of ternary products,
but made an initial foray on my own [6].

Eventually, finding the possible paths into this thicket too numerous, I decided to
attempt to construct a ternary analog of C (which, of course, has a binary product). The
results of this effort are presented here. Because this is a construction from scratch of
what is (at least to me) a new mathematical object, the ideas are presented primarily in
the form of a series of Assumptions and Motivations.



Assumption 1: Cs is 3-dimensional, with basis
{io ; il ; iZ } .

Motivation: This seems a natural generalization of the structure of C, with basis {1, ¢}.
(I think of ¢y as being the C3 version of the unit 1, but will refrain from writing it
like that.) The point of making it 3-dimensional is the desire to be able to express
3% + 4% + 5% = 63 as an equation in C3 in a way similar to (3 + i4)(3 + i4)* =
32 + 42 = 5%. More generally, the smallest number of positive integers the sum of
whose cubes is an integer cubed, is 3.

Assumption 2: Cj is a complex linear space, every element X € Cj3 of the form
X = uig + viy + wis, u,v,w € C.

Motivation: Actually, I tried to make it a real linear space, but failed. More on this
below.

Assumption 3: Complex conjugation effects only elements of C. That is,
X* = (UZO + Uil + wlz)* = U*io + U*il + w*iz.

Assumption 4: There is a conjugation on Cs, denoted X #, which has no effect on C.
That is,
X# = (uig + viy 4 wis)# = will + vi? + wiff

Assumption 5: For all X € Cs,
XHE#HE — Y
Motivation: This generalizes «** = u,for all u € C.
Assumption 6: For all X € Cj, there exists u € C such that
X + X# 4 X## = uiy.
Motivation: This generalizes v + u* € Rforall u € C.
Notation: For all XY, Z € Cs, we denote their ordered ternary product by
<X, Y, 7>
(and for the sake of clarity I assume this satisfies

< XH+AY,Z>=< XY, Z>+<AY 7>



for all A € C3 (along with this equations cyclic permutations), and for all complex
scalars, u, v, w,
<uX, oY, wZ >= uwvw < X,Y, 7 >).

Assumption 7: Cj is cyclic commutative:
<X\)YZ>=<Z,X,Y >.

Motivation: Well, for one, without some assumptions of this sort we’ll never have a
chance of getting to a multiplication table. In addition, C is commutative (so also
cyclic commutative). Another ternary example of this is found in the octonion associ-
ator, p(qr) — (pqg)r, p,q¢,r € O. This is invariant with respect to cyclic (symmetric)
permutations of p, ¢, 7. (Only in dimensions 4 or higher is the set of symmetric permu-
tations bigger than the set of cyclic permutations.)

Assumption 8: For all XY, 7 € Cs,

< X,Y, Z>*F=<7# X# Y# >
Note: Due to assumption 7 this can be replaced with

< X,Y, Z >F=< X* Y# 7% >

I include this non-effective assumption because I am used to dealing with division al-
gebras where that kind of thing is important. In C one generally sets (uv)* = u*v*.
This works because C is commutative, but H and O are not, and in those cases we need
to permute the right hand side to read (uv)* = v*u*. This works for C too. Someday,
however, [ may get around to seeing if there might be ternary algebras Hs or O3, and
at that point Assumption 8 may play a crucial role.

Assumption 9: For all X = wuig + vi; + wis € Cg,
X# = X = X = uip.
Note: This is consistent with Assumption 6, since
(X—I—X# —I—X##)# = X# L X##E L xHHHE - x 4 X# —I—X##,

(X### = X). This was one of my original Assumptions, but it is actually a conse-
quence of earlier Assumptions. If X# = X, then X + X# + X## = 3X, so by
Assumption 6, 3.X, hence X, is linear in ;.

Assumption 10: For all X = uiy + vi; + wis € Cs,
<X, X# X#F# >= (4@ + 0% +wd)ip.
Motivation: This is a straightforward generalization of

(a+1db)(a +ib)* = a® +b*, a,b € R.



Without the factor 3 in the dimensionality of the Leech lattice, and that 32 + 4% = 52
and 33 + 43 + 5% = 63, I would never have attempted to construct a ternary generaliza-
tion of C. As to those two sums of powers, it may be just coincidental, but mathematics
is not known for such coincidences lacking any deeper meaning.

Definition: Let '
€ = _% + 2\2/5 = \S/Ta

c __%_i\2/§:€*:€—1:\f/j

These are the two nontrivial cube roots of unity in C. That is,
63 = (62)3 = 66 =1.

Note that
1+e+e2=0.

Notation: For any integer k, let k%3 be shorthand for &£ modulo 3 (this is a notation
derived from computer coding, which is replete with notational conventions that could
enrich mathematics). Note that for integers &k, m, n,

k men €k+m+n

Fe k+m+n)%3.

_
Assumption 11: This is a big one:
i =i, k=0,1,2,

So,

HHE 2k (2k)%3;
it =€ zk_e( )Olk,

and

3k:)%3ik —

i}j&## = eSkik =l 1.

So, in general, and less specifically, zf = /1 -14g. Likewise, in C we have 1* = &/1- 1
and i* = 71 - i, the former square root being +1, and the latter —1.

Discussion: This takes us back to the assumption that C3 is a complex linear space. |
tried to make it real, but couldn’t find a conjugation that gave me Assumption 10. In
the end I found the introduction of the complex cube root of unity to be natural. Finally
note that iy, + i +i¥ % = (14 e+ ¢?)i, =0, k=1,2,50 X + X# 4+ X## islinear
in 7 forall X € Cs.



Assumption 12 (toward a multiplication table): For all k,m,n € {0, 1,2}, there
exists some j € {0, 1,2}, and some g, € C withnorm 1, such that

< Zkalmaln >= ukmnlj

Motivation: This is a natural generalization of what we observe in the multiplication
tables of C, H and O.

Consequence: For all k,m n € {0, 1,2},

< ik; ima Zn >= Ukmni(k+m+n)%3~

Proof:
ipyim,in >* = < iF i# i# >
= (M)A iy i >

k 3
— UkmnG( +m+n)% i

S
ukmnzj .

Therefore,

H#_ (k+m+n)%3 ;.
i =l )% 1.

By assumption 11, j = (k + m + n)%3. QED

Final Results and Assumptions: As usual, let X = wuiy 4+ vi; 4+ wis, and to sim-
plify the notation, let
< kmn >=<ig,tm, i > .



Then, using cyclic commutivity (< kmn >=< nkm >),

< X, X# X## S =

< uig + vip 4 wis, uip + veiy + welia, uiy + veliy + weis >
u? < 000 > 402 < 111 > +w? < 222 >

+(1 4 €+ €?)(u?v < 001 > +uv? < 011 > +u?w < 002 >
F+uw? < 022 > +v%w < 112 > +ow? < 122 >)

+uvw(e? + €2 + €2) < 012 >
+uvw(e+ e+ €) < 210 >

u? < 000 > +v3 < 111 > w3 < 222 >
+uvw(3e?) < 012 >

+uvw(3e) < 210 >,

since 1 + ¢ + ¢2 = 0. It follows from Assumption 10 that

and

< kkk >=1y, k=0,1,2,

<210 >= —e < 012 > .

We can achieve this latter condition rather nicely with two new assumptions.

Assumption 13: Anticyclic permutations on the units results in a complex conjugate.

That is,

< nmk >=< kmn >~ .

Consequence: For all k,m € {0,1,2},

< kkm >= ii(2k+m)%3.

Proof: The cyclic and anticyclic permutations of : kkm : are the same. In combination
with Assumptions 12 and 13, this is sufficient. QED

Assumption 14: Since (0 + 1 + 2)%3 = 0, < 012 > and < 210 > are linear in
t0. Because it works, and it makes things pretty, we set

< 012 >= tezp.

In combination with Assumption 13 this implies

<210 >=< 012 >*= —ie%ig = —e < 012 >,



as required. As a further consequence,
< 1, iﬁ, i## >= &y, :kmn: aneven/odd permutation of :012:.

Discussion: The only thing needed to complete the multiplication table would be to de-
termine the signs in < kkm >= £i(a1 1 m)%3. My preference, paralleling the structure
of C,is for < 00m >= +ip, and < kkm >= —iar1m)%3, k = 1,2. However, this
has not yet been checked for consistency. And beyond this is the question of ternary
associativity. For example, does

<<<AB,C><DEF><GHI><JKM><NPQ>>
=<< A, B,C> << D EF><GHI><JKM>> <N,P @Q>>7

It is clear the results presented here just scratch the surface.

Conclusion: I do not presently know if something useful could be achieved by re-
placing C with H or O in the above. Even at this point one could, for example, replace
e with ) tant
1T 92 T 43

where q1, q2, ¢3 are the anticommuting imaginary units of H. This element is also a
cube root of unity, but nothing new comes out of such a replacement, as the subalgebra
of H generated by that element and its conjugate is isomorphic to C. Allowing arbitrary
coefficients in C3 from H or O (instead of C) would require great care due to noncom-
mutativity, and, in the case of O, nonassociativity (which of course arises in products
of 3 or more elements). It is clear much thought would have to be given to possible
modifications of the conditions underlying Cs, perhaps involving the XY-product in the
case of O (in my experience the XY-product is useful at unraveling all sorts of octonion
problems [5]). On the other hand, mayhaps H would find greater use as coefficients in
a ternary quaternion generalization.

However, my motivation for looking into this is rooted in physics, and in particular
into my assumption that the full spinor space for all three families of leptons and quarks
is [7]

T® = C® H? @ O°.

Since the dimensionality of this space is wrong for a conventional spinor space, some
new direction must be sought to make full sense of it, and perhaps at the same time to
give the Leech lattice a ternary product structure. And does one require a ternary prod-
uct to construct a Lagrangian for the 3 families of quark/lepton/antiquark/antilepton
fields of T®? Theoretical physics owes ils successes to occasional transfusions of new
mathematics. It remains to be seen if these ideas are the right blood type.
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