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The Standard Model arises from T := C⊗H⊗O. After summarizing
how this happens, a new - and somewhat obvious - interpretation of these
mathematical underpinnings is presented which requires 1,3-dimensional
spacetimes to be fundamentally matter, or anti-matter. Both are required,
and linked by and extra six space dimensions which carry color charges.

Spinors from Division Algebras

In this article the spinor is at the root of everything. My notion of what a spinor
is derives from Ian Porteous’s book Topological Geometry [1] which I was directed to
some 30 years ago. Ian presented a table of representations of universal Clifford alge-
bras of p-time:q-space dimensional spacetimes in terms of the first three real normed
division algebras: R, C, and H (the remaining division algebra, the octonions, O, will
enter shortly). I will employ Ian’s notation K(n) to be the algebra of n×n matrices over
an algebra K.

Let CL(p, q) be the Clifford algebra of p,q-spacetime (actually, timespace), then
any of Ian’s representations can be derived from the sequences for p = 0,1,2,3,..., and q
= 0 (line 1), and the sequence for p = 0 and q = 0,1,2,3,... (line 2),

R R2 R(2) C(2) H(2) H2(2) H(4) C(8) R(16) R2(16) ...
R C H H2 H(2) C(4) R(8) R2(8) R(16) C(16) ...

and the rule
CL(p+ 1, q + 1) = CL(p, q)⊗R(2).

(There is also a periodicity (Bott) of order 8 indicated in the rows above. Also, R(2),
being isomorphic to CL(1, 1), provides a great way of adding time and a transverse
space dimension to a pure (longitudinal) space Clifford algebra.)

Some things to point out in particular:
• In each case we can find a set of p+q anticommuting elements of CL(p, q) (the 1-
vectors) the squares of which are ±I , with I the identity of CL(p, q) (p +, and q -);
• The product of these p+q anticommuting 1-vectors is not a real multiple of the iden-
tity (this is the ’universal’ part of ’universal Clifford algebra’);
• The spinor space of CL(p, q) is the obvious set of n×1 column matrices over R, C,
or H, on which our respective representations of CL(p, q) would most naturally act via
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left matrix multiplication;
• If the underlying division algebra is H, then multiplication on the spinor space by
elements of H from the right is an algebra of actions on that space that is not accounted
for by the elements of CL(p, q), and so it is internal with respect to those external Clif-
ford algebra actions (in the sense that isospin SU(2) is an internal symmetry, and in
what follows it is from this right action by H that isospin SU(2) arises in the form of
the subset of unit elements, which is multiplicatively closed);
• And finally, the set of elements generated by taking the commutators of pairs of 1-
vectors is the set of 2-vectors, and with respect to the commutator product this set is
isomorphic to the Lie algebra so(p, q) ' spin(p, q).

One last thing to note: each of the n components of these n×1 spinor columns is an
element of R, C, or H, a division algebra. Conventionally CL(3, 0) is represented by
the algebra C(2), but

C(2) ' P := C⊗H,

the complexified quaternions. These two versions of CL(3, 0) have different spinor
spaces. In the former case the spinor space is the 4-dimensional (over R) and consisting
of 2×1 complex matrices; and in the latter case the spinor space is the 8-dimensional
1-component set C ⊗ H itself. In this latter case the algebra of actions of H multi-
plication on a spinor from the right is again not accounted for and commutes with the
Clifford algebra actions. In addition, in this case the single spinor component is not an
element of a division algebra, but of C ⊗H, which has a nontrivial decomposition of
its identity into a pair of mutually orthogonal idempotents that sum to 1. More on this
kind of thing very soon: it is the key to almost everything.

Octonions as Spinors

O is an 8-dimensional real algebra, and despite its nonassociativity it can be incor-
porated into this Clifford algebra and spinor scheme. First some notation:

∀ x,w ∈ O, Lx[w] = xw, Rx[w] = wx.

However, although this notation is somewhat conventional, in all my previous work
I’ve used the following notation (thereby avoiding subscripts on subscripts):

xL ≡ Lx, xR ≡ Rx.

In particular, I use a basis ea, a = 0, 1, ..., 7, for O, with e0 = 1 the identity, and

{e0, e1+k, e2+k, e4+k}

is a basis for a quaternionic subalgebra for all integers k, where the index summation
is modulo 7, from 1 to 7. Define

eLab...c ≡ LeaLeb ...Lec , eRab...c ≡ Rec ...RebRea ,
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(note reversal of indices in second case), and let OL and OR be the algebras spanned
by these respective sets of left and right actions. Finally, and most importantly,

OL = OR ' R(8),

so these are each the full algebras of endomorphisms on 8-dimensional O. Any element
of OL can be expressed as a linear combination of elements of OR, and visa versa.
More on this later.

So,
OL ' R(8) ' CL(0, 6),

and the spinor space of this representation of CL(0, 6) as OL is just O itself, which,
unlike R8, has a natural multiplicative structure. The spinor space itself is a division
algebra. (Note: OL is trivially associative.) We can represent a basis for the Clifford
algebra 1-vectors in this case as

eLp, p = 1, 2, 3, 4, 5, 6.

The set of 2-vectors is then spanned by

eLpq, p, q ∈ {1, 2, 3, 4, 5, 6}, p 6= q,

and given the commutator product this is the Lie algebra so(6). The 6-vector is

p=6∏
p=1

Lep = Le7 =

p=6∏
p=1

eLp = eL7.

This is how I write out the multiplication table whenever I need a quick
reference:

124
235
346
457
561
672
713

These are the 7 sets of ”quaternionic” index triples. For example, from
this I deduce that e6e1 = −e1e6 = e5. In general, if a and b are distinct
indices from 1 to 7, then eaeb will be equal to ±ec for some other index
c, the sign positive if b− a is a power of 2, and negative otherwise (b− a
taken modulo 7, from 1 to 7, so 2-5 = 4, and therefore e5e2 is positive
(e3)). Note: in [2] a dual to this multiplication table was used.
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Complexified Octonions as Spinors

Define
S = C⊗O.

Since OL = OR, and trivially CL = CR, the algebra of left or right actions of S on
itself is

SL = SR = C⊗OL ' C⊗R(8) = C(8) ' CL(7,0).

Quickly then, so we can get to the res, SL viewed as the Clifford algebra CL(7, 0) has
the following natural identifications:

1-vectors: ieLa, a ∈ {1, ..., 7},
2-vectors: (so(7)) eLab, a, b ∈ {1, ..., 7}, a 6= b,
...

7-vector
∏a=7
a=1 iLea = −ieL1234567 = i.

The spinor space in this case is S itself, and as was true of the previous case, this
spinor space has an algebraic structure of its own. However, in the previous case the
spinor space, O, was a division algebra; S is not, and it admits a nontrivial resolution
of its identity into a pair of orthogonal projectors (idempotents, as long as everything
is alternative). These are

ρ± =
1

2
(1± ie7)

(this selection is clearly not unique, but dates back almost 40 years in the literature [6],
and is, given my choice of octonion multiplication table, rather natural).

The presence of these projectors means there is a natural (ok, I’m over-using that
word) decomposition of the spinor space S into 4 mutually orthogonal subspaces:

S++ = ρ+Sρ+ = ρL+ρR+[S], 1-d over C
S+− = ρ+Sρ− = ρL+ρR−[S], 3-d over C
S−+ = ρ−Sρ+ = ρL−ρR+[S], 3-d over C
S−− = ρ−Sρ− = ρL−ρR−[S], 1-d over C

where ρL± = 1
2 (1± ieL7), and ρR± = 1

2 (1± ieR7), which provides an expression of
this decomposition in terms of projectors in CL(7, 0).

These four reductions of S into four orthogonal subspaces have corresponding re-
ductions of CL(7, 0) into subalgebras that map the four subspaces to themselves. These
are:

CL(7, 0) −→ ρL+ρR+CL(7, 0)ρL+ρR+ = CLρ(7, 0)ρL+ρR+,
CL(7, 0) −→ ρL+ρR−CL(7, 0)ρL+ρR− = CLρ(7, 0)ρL+ρR−,
CL(7, 0) −→ ρL−ρR+CL(7, 0)ρL−ρR+ = CLρ(7, 0)ρL−ρR+,
CL(7, 0) −→ ρL−ρR−CL(7, 0)ρL−ρR− = CLρ(7, 0)ρL−ρR−,

where the subalgebra CLρ(7, 0) is the same for all four reductions, so we will just look
at the (++)-reduction. (Why are the CLρ(7, 0) the same? In each case the reduction oc-
curs when one of the ρ’s goes through the Clifford algebra. If eL7 (eR7) anticommutes

4



with a piece of CL(7, 0), then ρL± (ρR±) will change to ρL∓ (ρR∓) when drawn from
one side of that piece to the other, and when it gets there it will encounter ρL± (ρR±),
and the resulting product is zero, so that piece will be ”reduced” out. So the sign in
ρL± (ρR±) is immaterial.) Note first that

ρL±ρL± = ρL± ⇒ ρL±eLaρL± = eLaρL±, a = 0, 7,
ρL±ρL∓ = 0 ⇒ ρL±eLaρL± = eLaρL∓ρL± = 0, a = 1, ..., 6,
ρR±ρR± = ρR± ⇒ ρR±eRaρR± = eRaρR±, a = 0, 7,
ρR±ρR∓ = 0 ⇒ ρR±eRaρR± = eRaρR∓ρR± = 0, a = 1, ..., 6.

Therefore, of the seven 1-vectors of CL(7, 0), the only one that survives the reduction
to CLρ(7, 0) is ieL7. (Oh, and by the way, ρL± commutes with ρR±.)

However, what we’re really interested in is what happens to the 2-vectors, viewed
as a representation of the Lie algebra so(7). There are 21 elements, eLab, a, b ∈
{1, 2, 3, 4, 5, 6, 7} distinct, but we can divide these into two types: those for which one
of the indices is 7; and those for which neither index is 7. In what follows it will be
understood that any index p, q, r, s ∈ {1, 2, 3, 4, 5, 6}. Ok, so

ρL±eLp7ρL± = ρL±eLpeL7ρL± = eLpρL∓eL7ρL± = eLpeL7ρL∓ρL± = 0,
ρL±eLpqρL± = ρL±eLpeLqρL± = eLpρL∓eLqρL± = eLpeLqρL±ρL± = eLpqρL±,

where the subalgebra of so(7) generated by elements eLpq, p, q ∈ {1, ..., 6} distinct,
is so(6). But we’re not quite done, since we still have to finish the reduction by looking
at ρR±eLpqρL±ρR±. Since the ρL± is irrelevant, we’ll leave it out for now and just
look at the elements ρR±eLpqρR±.

Once again we’re going to divide these 15 index combinations into 2 sets: those
for which epeq = ±e7; and those for which epeq = ±er, r 6= 7. We’ll consider the
latter case first, and there are 12 distinct elements (to within a sign). We need only look
at one, which will be eL12 (note: e1e2 = e4). Recall, OL = OR, so we can express
any element of OL as a linear combination of elements of OR. In particular, given the
multiplication table employed here [2]:

eL12 =
1

2
(eR4 − eR12 + eR63 + eR57).

Therefore,

ρR±eL12ρR± = 1
2ρR±(eR4 − eR12 + eR63 + eR57)ρR±

= 1
2 (ρR±ρR∓eR4 − ρR±ρR±eR12 + ρR±ρR±eR63 + ρR±ρR∓eR57)

= 1
2ρR±(−eR12 + eR63)

= 1
2 (eL12 − eL63)ρR±.

Note: ρR± commutes with (eL12 − eL63) = (−eR12 + eR63). The other eleven eLpq ,
such that epeq = ±er, r 6= 7, reduce in like fashion when surrounded with ρR±, and
these 12 elements are not linearly independent. For example,

ρR±eL63ρR± = −1

2
(eL12 − eL63)ρR±.
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So, in fact there are only 6 independent elements surviving the reduction (ρR±...ρR±)
of these 12 elements. These are 6 of the 8 elements of the su(3) Lie algebra that
generate an SU(3) subgroup of the Lie group G2, the automorphism group of O, that
leave the unit e7 ∈ O invariant.

The final 3 elements of so(6) we need look at are the eLpq for which epeq = ±e7.
These are

eL13 = 1
2 (eR7 − eR13 + eR26 + eR45),

eL26 = 1
2 (eR7 + eR13 − eR26 + eR45),

eL45 = 1
2 (eR7 + eR13 + eR26 − eR45),

and (I hope this is obvious) ρR± commutes with every term on the right hand side of
these equations, so there is no further reduction achieved at this point. However, we
can take linear combinations of these 3 elements to make it clearer what the overall
structure of ρR±so(6)ρR± actually is. In particular, there are 2 linearly independent
elements we get by taking the differences of these 3 in pairs. Together with the 6
elements we got above, we now have a complete basis for su(3) = span{(eLpq −
eLrs)}, where p, q, r, s ∈ {1, 2, 3, 4, 5, 6}, and epeq = eres. Again, this generates the
SU(3) subgroup of G2 that leaves e7 invariant.

The final element we get by taking the sum of the 3 elements above. In particular,
let

µ =
1

6
(eL13+ eL26+ eL45) =

1

6
(eL7− eL7+ eL13+ eL26+ eL45) =

1

6
(eL7+2eR7).

This element commutes with the elements of su(3), and together they constitute a u(3)
subalgebra of so(6), which is a subalgebra of our initial so(7).

In fact, however, we have four variations on this full reduction, each acting nontriv-
ially on only one of the four subspaces of our spinor space S.

u(3)ρL+ρR+ : S++ (su(3) singlet),
u(3)ρL+ρR− : S+− (su(3) triplet),
u(3)ρL−ρR+ : S−+ (su(3) antitriplet),
u(3)ρL−ρR− : S−− (su(3) antisinglet).

And as to µ, it has the following actions on the four subspaces:

µS++ = − i
2S++,

µS+− = + i
6S+−,

µS−+ = − i
6S−+,

µS−− = + i
2S−−.

Anyone familiar with the Standard Model of quarks and leptons will recognize this as
the u(1) hypercharge generator, or what can be interpreted as such. To this point it’s
just pure mathematics.
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T2 Spinors: Particle Identifications and the New Interpretation

Bases for the real division algebras, C, H, O (complex algebra, quaternions, and oc-
tonions), are [2][3][5]:

C {1, i}
H {q0 = 1, qk, k = 1, 2, 3}
O {e0 = 1, ea, a = 1, ..., 7}

The algebra
T := C⊗H⊗O

is 2× 4× 8 = 64-dimensional. It is noncommutative, nonassociative, and nonalterna-
tive.

Although I consider it but a restricted model of reality, the basis of what I will do
here is the 10-dimensional space-time model developed in [2], with mathematical ex-
pansion to be found in [3]. In this model, which accounts for a single family of quarks
and leptons, and a corresponding antifamily, the foundation is the 128-dimensional
hyperspinor space

T2

(the doubling of T in the spinor space is modeled on the notion that a Dirac spinor is a
double Pauli spinor).

A Dirac spinor is acted upon by the Dirac algebra,

C(4).

But I use a division algebra representation of the Pauli algebra,

PL := C⊗HL,

and in this case the Dirac algebra is

PL(2).

This is the complexification of the Clifford algebra of 1,3-spacetime. Likewise T2

is acted upon by the complexification of the Clifford algebra of 1,9-spacetime, repre-
sented by

TL(2),

where TL is the algebra of left actions of T on itself, which in the octonion case, due
to nonassociativity, requires the nesting of actions.

If memory serves (and it serves less well every year), von Neumann and others [7],
in their efforts to expand quantum theory from a foundation on C to one on O, linked
quantum observability with algebraic associativity, and unobservability with nonasso-
ciativity, thinking along these lines being forced by the nonassociativity of O. It was
this recollection, although not entirely relevant, as their work revolved around using O
as a foundation for quantum theory, that inspired what follows.
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In the Standard Model, or at least in the real world, quarks are not observable. In
the T-theory developed in [2][3], and elsewhere, the quarks are associated with the
octonion units, ep, p = 1, ..., 6. The extra six space dimensions are also rest on these
units, and they too are evidently not directly observable.

My model building in [2][3] relies heavily on the resolution of the identity of

S := C⊗O

into a pair of orthogonal idempotents,

ρ± =
1

2
(1± ie7)

discussed above. With these S was divided into 4 orthogonal subspaces:

S++ = ρ+Sρ+,
S−− = ρ−Sρ−,
S+− = ρ+Sρ−,
S−+ = ρ−Sρ+.

Both S++ and S−− are associative subalgebras of S isomorphic to C. S+− and S−+

are not subalgebras, but they are highly nonassociative (this nonassociativity implying
S2
±∓ = S∓±). Elements of the first two sets are linear (over C) in the octonions {e0 =

1, e7} (lepton and anti-lepton parts), and the second two sets linear over {ep, p =
1, 2, 3, 4, 5, 6} (quark and anti-quark).

An elegant representation of the Clifford algebra CL(1, 9) represented in TL(2)
that is aligned with the choice of the octonion unit e7 to appear in ρ± arises from the
following set of ten anti-commuting 1-vectors:

β, γqLkeL7, k = 1, 2, 3, γieLp, p = 1, ..., 6,

where

ε =

[
1 0
0 1

]
, α =

[
1 0
0 −1

]
, β =

[
0 1
1 0

]
, γ =

[
0 1
−1 0

]
,

and as usual the subscripts ”L” and ”R” signify an action from the left or the right on
T. (So, for example,

S+− = ρ+Sρ− = ρL+ρR−[S].)

Our observable spacetime has 3 space dimensions, not 9. There are two (what I
would call) canonical ways of reducing the 1-vectors of CL(1, 9), a mix of observable
and unobservable dimensions, to the 1-vectors of observable CL(1, 3):

ρL± {β, γqLkeL7, k = 1, 2, 3, γieLp, p = 1, ..., 6}ρL±

= {β, γiqLk, k = 1, 2, 3}ρL±.

8



These two collections of CL(1, 3) 1-vectors act on half of the full spinor space T2. In
particular, they act respectively on

ρL±[T
2] = ρ±T

2,

where the underlying mathematics implies that these are, respectively, the matter and
anti-matter halves of T2 (ρ+T2 being a full family of lepton and quark Dirac spinors,
and ρ−T2 the corresponding anti-family) (see [2][3]).

Our observable universe is a 1,3-spacetime. There are those two ways of reduc-
ing the initial 1,9-spacetime above to 1,3-spacetimes, one associated with matter, one
anti-matter. It now seems perfectly obvious to me to interpret this to mean that our
observable 1,3-spacetime must be one, or the other (since it is ours, we call it matter).
That is, the observable (habitable, if you will) spacetime in which we reside must of
necessity be a matter universe, with anti-matter arising from secondary interactions -
or an anti-matter universe - and that both must exist. The question therefore arises,
if there is just our matter universe, and a single separate anti-matter universe, do they
evolve in tandem? That is, is there an anti-matter me presently typing an anti-matter
version of this article on an anti-computer? Curiously, that anti-me doubtless thinks of
himself as being composed of matter. He is wrong, of course. I am the matter me; he
the anti-matter.

However, this tandem evolution seems unlikely, for these matter and anti-matter
1,3-spacetimes, although distinct, can interact with each other through the remain-
ing 6 dimensions of our initial 1,9-dimensional spacetime. Quarks, like these ex-
tra 6 dimensions of space in this model, are evidently not directly observable. And
like the extra 6 dimensions of space, they owe their existence to the octonion units
ep, p = 1, 2, 3, 4, 5, 6. To reduce the spinor space T2 all the way to its observable
lepton part (the anti-lepton part is similar) we need an extra ρ+. Specifically,

ρL±ρR±[T
2] = ρ+T

2ρ+

is a lepton doublet, consisting of 2 Dirac spinors, one for the electron, one for its
neutrino. (The particle identifications are not arbitrary. See particularly [3] for the
mathematics behind that statement.) Interestingly, this further reduction does not result
in any further reduction of the 1-vector space of our original Clifford algebra, CL(1, 9).
We’re still left with a version of 1-vectors for CL(1, 3). However, the story is different
for the space of 2-vectors, which we saw above in the case of S. Initially they form a
representation of the 1,9-Lorentz Lie algebra, so(1, 9). After the initial reduction we
get something more than so(1, 3):

ρL+so(1, 9)ρL+ = (so(1, 3)× so(6))ρL+,

and after the second spinor reduction,

ρR+ρL+so(1, 9)ρL+ρR+ = (so(1, 3)× u(1)× su(3))ρL+ρR+.

This is precisely what it seems.
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The situation is more complicated than this (see [2][3]), but the overriding point
being made here is that the mathematics of T can be viewed as implying we exist in
an observable universe that must be dominantly matter, or anti-matter (if we accept
that everything carrying nontrivial SU(3) color charges is not directly observable by
us, which in this context includes quarks, anti-quarks, and the extra 6 dimensions of
spacetime, all of which involve the octonion units, ep, p = 1, 2, 3, 4, 5, 6, which carry
those charges). Acceptance of this notion has the potential to imply far more profound
things about physics.

For example, in [2] it was pointed out that the original model allowed algebraically
for matter-antimatter mixing via the extra 6 dimensions, but that reasonable conditions
put on the dependence of the various particle fields on these extra dimensions led to
these mixing pathways disappearing. Whatever the case, in the present context this
idea of mixing needs to be rethought. The extra 6 dimensions provide channels from
the matter universe to the antimatter universe. Were these channels viable they might
allow, for example, an electron from our matter universe to channel through to the
anitmatter universe, appearing on the other side as an antiquark (it necessarily picks
up an anti-color charge en route). At the very least they would allow the particles of
our matter spacetime to influence, and be influenced by, the particles of the anti-matter
spacetime. And this just scratches the surface.

A final comment: this exploitation of T as the foundation of a model of reality is
not the only one, it is the one I like best (well, I’ve been at it for over 30 years, so
changing now is not going to happen). For an alternate approach, see [8].
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