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A really really very good smooth approximation to π(n).

Caveats
• Although I have toyed with number theory since my early teens (my high school

Science Fair project was a big hit), and although I have advanced degrees in
mathematics and physics, I’ve never had a course in number theory.

• I’ve read a book or three, doing research to fill in knowledge gaps when my
number theory play needed augmenting, but I will offer no references. You’re on
your own.

• I have utterly no idea if there are precedents for some of the formulae I shall
develop, and, quite frankly, I don’t care. Number theory is a very easy branch
of mathematics to toy with. The curious amateur can pass many an odd hour
rediscovering old truths, and that’s what this paper will cover, viz., my odd hours
and what they wrought, old or not.

• If you’re reading this you doubtless know enough prime number theory to follow
what I have to say. Some of my thinking I will explicate, but mostly the content
is not deep and I shan’t bother.

Throughout the rest, N is the set of positive integers, the variables i, j,k,m,n ∈ N,
p,q ∈ N are prime numbers, and x,y,z will be real number variables. Some of these
may never get used.

Prime Number Theorem and its Shortcomings
The deep end of prime number theory frequently involves the prime number theorem
and things like the Riemann zeta function. On the shallow end are the following ideas.

Let
π(x) = number of primes < x, x≥ 1.

The principle supposition guiding the rest of this paper is that there exists an optimal
smooth function that provides a best approximation to π(x) (which, of course, is not at
all smooth, being a step function).

Let
ρ(x) = density of primes at x,
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where ρ(x) is a hypothetical optimal smooth function. (For n a positive integer, ρ(n)
is the probability that n is prime.) So

π(n)≈
∫ n

2
ρ(x)dx. (1)

Two smooth approximations feature prominently in the prime number theorem:

π(x)≈ x
lnx

, (2)

and
ρ(x)≈ 1

lnx
. (3)

This gives rise to another approximation for π(n):

π(n)≈ Li(n)≡
∫ n

2

dx
ln(x)

. (4)

The approximation for π(n) in (4) is much better than (2), but neither is really very
stellar, and as a consequence neither has interested me particularly. As a prime number
hobbyist, none of this offered me anything I could sink my teeth into. It has been
proven that

lim
n→∞

π(n)/(n/ln(n)) = lim
n→∞

π(n)/Li(n) = 1, (5)

and that’s most of what I know about the prime number theorem.
The problem for me is that the limits in (5) are not all that impressive. Consider

that

lim
x→∞

x+
√

x
x

= 1,

and yet
lim
x→∞

((x+
√

x)− x) = ∞.

So there is no way that x+
√

x is an optimal (or even good) approximation to x. And in
fact, consider that

π(107) = 664,579,

and

π(107)− 107

ln107 = 44,158,

and
Li(107)−π(107) = 339,

and as one carries on beyond 107 these differences grow impressively more positive,
both seemingly without bound. Neither of these approximations to π(n) behave even
remotely how I’d expect a (the) true optimal smooth approximation to behave.

2



Looking Elsewhere: lcm(n)

Much of my time as a number theory hobbyist was spent plotting step functions stem-
ming from prime numbers. A couple of these involved

lcm(n), (6)

the least common multiple of the integers from 1 to n. This is the smallest positive
integer such that for all 1≤ k ≤ n,

lcm(n)
k

= m ∈ N. (7)

Here is a small table of values:

n lcm(n) added factor
1 1 1
2 2 2
3 6 3
4 12 2
5 60 5
6 60 1
7 420 7
8 840 2
9 2520 3
10 2520 1

Three things should be clear from this:

• lcm(n) is in fact a step function;

• lcm(n) steps up iff n = pk for some k ∈ N, and p a prime;

• If n = pk, then lcm(n) = p lcm(n−1).

(Just a quick aside: finite mathematical fields exist of order n iff n = pk, p prime.)
Clearly lcm grows rather quickly, which makes it difficult to plot. So instead I

plotted
LL(n)≡ ln(lcm(n)). (8)

The result surprised the hell out of me: it looked linear. After a lot of plotting, looking
things up in tables (there was no viable internet when I began this effort), I decided that
LL(n) had a simple smooth approximation, optimal in exactly the way I expect optimal
to look:

LL(n)≈ n−1. (9)

Why had I never seen this in any of my readings in number theory? Surely it must
be known. Was it considered unimportant? To this day I’ve still not stumbled across
this notion in any of my admittedly not very assiduous perambulations in published
number theory. Well, known or not known, in the absence of any cogent argument
against looking further, I did.
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Looking Further
Years (decades) ago I used (9) to derive a formula for π(n) that I subsequently deter-
mined was something that Riemann played with over a century earlier. I’m too lazy to
dig into my piles of mathematical notes to find it, and in any case that would be less
fun than just digging into (9) anew and see where it led. I was not disappointed.

Discussion: Contributing to lcm(n)

Our underlying assumption is LL(n)≈ n−1, which leads to

lcm(n)≈ e lcm(n−1). (10)

In reality, however,

lcm(n) = lcm(n−1), if n1/k is not prime for all k ∈ N,

lcm(n) = n1/k lcm(n−1), if n1/k = p, a prime.

Each of these latter possibilities occurs with a certain probability, ρk(n), the density of
prime powers, pk, at n.

Discussion: ρk(n)

If there are m primes between n1/k and n1/k + j, then these same m primes account for
all (primes)k between (n1/k)k = n and (n1/k + j)k. Likewise, at the infinitesimal level,
if there is an amount of ”primeness” dm between n1/k and n1/k + d j, then dm is also
the amount of (primeness)k between n and (n1/k +d j)k.

Note: let Pi(x) be our hypothetical optimal smooth approximation to π(x).
Then

dm = Pi(n1/k +d j)−Pi(n1/k).

The density of primes at n1/k is

ρ(n1/k) =
dm

(n1/k +d j)−n1/k =
dm
d j

. (11)

Therefore, the density of pk at n is

ρk(n) =
dm

(n1/k +d j)k−n
=

dm

kn
k−1

k d j
=

ρ(n1/k)

kn
k−1

k
, (12)

where in the denominator of the third term we can safely ignore all higher powers of
the infinitesimal, d j.

4



Discussion: Average contribution to lcm(n)

Suppose we have a function s(n), n ∈ N, and that

s(n) = j s(n−1),

where j = 2 or j = 3, and that the probability that j = 2 is P2 = 2
3 , and that j = 3 is

P3 =
1
3 . So, for example, the expected (average) value of

s(61) = 240320 s(1).

So the average contribution at each step is

(240320)
1
60 = 2P23P3 .

We’ll apply this same reasoning to lcm(n). In incrementing from lcm(n− 1) to
lcm(n), the value either stays the same, or it changes by some factor in the set

{n, n1/2, n1/3, ... n1/k, ...}.

The probability that lcm(n) = n1/k lcm(n− 1) is ρk(n). Therefore, the expected, or
average, factor is

∞

∏
k=1

(n1/k)ρk(n) =
∞

∏
k=1

nρ(n1/k)/(k2n(k−1)/k)
) = e,

where that last equality is the point of all this. Taking the ln of both sides and dividing
by ln(n) gives us:

1
ln(n)

= ρ(n)+
ρ(n1/2)

22n1/2 +
ρ(n1/3)

32n2/3 + ...+
ρ(n1/k)

k2n(k−1)/k
+ ... (13)

Discussion: Möbius function, µ(n)

If n > 1 has a prime factorization pi1
1 pi2

2 ...p
ik
k , i j ≥ 1 for all 1≤ j ≤ k, then the Möbius

function of n is defined as follows:

µ(n) = 0, if any i j > 1,

µ(n) = (−1)k otherwise.

And µ(1) = 1.
As an example of how this gets used, let

s =
∞

∑
k=1

1
k
.

Ignore the fact that this sum diverges. Using µ(n) we can sum multiples of s to extract
just that first term, 1

1 = 1. If you’re unfamiliar with µ(n) it is worth your while to prove
to yourself that

∞

∑
m=1

µ(m)
s
m

=
1
1
= 1. (14)
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Discussion: Use µ(n) to solve for ρ(n)

I’m going to apply this same method to express ρ(n) as an infinite sum involving ln(n)
and µ(n) starting from (13). If I want to get rid of the kth term in the sum, I need to
modify the first term, ρ(n), to make it look like the kth term,

ρ(n1/k)

k2n(k−1)/k
.

To start, then, I need to replace n by n1/k:

1
ln(n1/k)

=
k

ln(n)
= ρ(n1/k)+ ...

so
1

ln(n)
=

ρ(n1/k)

k
+ ...

leading to
1

k n(k−1)/kln(n)
=

n1/k

k n ln(n)
=

ρ(n1/k)

k2n(k−1)/k
+ .... (15)

Now, just as I did in the last section in equation (14), I’m going to apply the function
µ to (15) to get

ρ(n) = ∑
∞
k=1

µ(k)
k n(k−1)/kln(n)

= 1
ln(n) ∑

∞
k=1

µ(k)
k n(k−1)/k

= 1
ln(n) (1−

1
2n1/2 − 1

3n2/3 − 1
5n4/5 +

1
6n5/6 − ...).

(16)

So, on the assumption I’m right (and I most certainly am), we now see why (3) fails
to be any better an approximation to ρ(n) than it is, and it isn’t really very good: it’s
because it’s missing all those terms after the 1 inside the parentheses in the second line
of (16). Admittedly their contribution is not large, but I hope to convince you that it’s
exactly what’s needed.

Discussion: Let a computer take over from here

A lot of work has been published on how much ρ(n) differs from 1
ln(n) . Glancing at

discussions on the internet I see little to excite. So I’m going to ignore it, for the most
part. And I’m also not going to do any heavy lifting when it comes to integrating my
ρ(n) in (16). I also assume that

π(n)≈
∫ n

2
ρ(x)dx,

but the thought of trying to work out that integral makes me tired. Instead I decided
to approximate the integral by replacing dx with ∆x = 1, and change the integral for a
sum:

π(n)≈
n

∑
k=2

ρ(k), (17)
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using (16) for ρ .
Originally I tested this idea with javascript code, but higher values of n required

something more robust, so I used Fortran. I incorporated the first 80 values of µ(n).

program pi

DOUBLE PRECISION, DIMENSION(80) :: mu

DOUBLE PRECISION nr,kr,psu,su

mu = (/1,-1,-1,0,-1, 1,-1,0,0,1, -1,0,-1,1,1, 0,-1,0,-1,0, 1,1,-1,0,0, &

& 1,0,0,-1,-1, -1,0,1,1,1, 0,-1,1,1,0, -1,-1,-1,0,0, 1,-1,0,0,0, &

& 1,0,-1,0,1, 0,1,1,-1,0, -1,1,0,0,1, -1,-1,0,1,-1, -1,0,-1,1,0, &

& 0,1,-1,-1,0/)

N = 1000000000

su = 0.0

do n = 2,N+1

psu = 1.0

nr = 1.0*n

do k = 2,size(mu)

kr = 1.0*k

psu = psu + mu(k)/(kr*(nr**((kr-1)/kr)))

!print *, psu, nr**((kr-1)/kr)

enddo

!print *,psu, log(nr)

psu = psu/log(nr)

su = su + psu

enddo

print *,’dog 80 = ’, su

end program pi

So, is the result any good? You be the judge.

n π(n) Li(n)−π(n) Pi(n)−π(n)
10 4 1 −1
102 25 4 −1
103 168 9 −1
104 1229 16 −3
105 9592 37 −6
106 78498 129 28
107 664579 338 87
108 5761455 753 96
109 50847534 1701 −80
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Certainly this is better than Li(n). Indeed, from 104 onward the difference Li(n)−
π(n) more than doubles in size between n and 10n. At the highest value for which I
can find data,

Li(1025)−π(1025) = 55,160.980,938.

As I do not own a computer that can test Pi(n) at an n that big (I just barely managed n=
109), I’ll just assume my result would be significantly better. It’s also worth noting that
in the table above, the Pi(n)−π(n) uses two approximations: it replaces the integral
by a sum; and it uses only 80 values of the Möbius function, µ(k). Still, unlike Li(n),
Pi(n) does not stray ever farther from π(n) even in this pretty good approximation,
there being a positive difference at 108, and negative at 109. I could not wish for
anything better.

Discussion: You can bank on it
This all started from the supposed optimal smooth approximation:

LL(n) = ln(lcm(n))≈ n−1.

Why n−1? Well, the plot looks a little less than n, and it’s an equality at n = 1 if I set
LL(n) = n−1. But that doesn’t change the implication that on average

lcm(n) = e lcm(n−1),

and it was from this that my smooth ”optimal” approximation, PI(n), to π(n) arose.
In closing, I find it difficult to believe that all of this doesn’t exist in the literature

somewhere. Even so, and even admitting I was too lazy to dig too deeply for it, it still
remains true, in my view, that it should not require deep digging. This is a cool result
and should be right up there with the prime number theorem.
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