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Theoretical physics, and in particular the search for a Theory of Everything, 
has for some time been approaching a barrier to advancement perhaps no 
less formidable than the speed of light is to relative velocity, or a temperature 
of absolute zero is to thermodynamics.  In those cases the energy needed 
to achieve the limit rises arbitrarily the closer to the limit one gets.  Advancement 
to a Theory of Everything, on the other hand, is increasingly hindered on both the 
mathematical and experimental fronts by the need for energies of a different sort: 
intellectual and financial.  As a consequence theory and experiment - historically 
each contributing significantly to the other's advancement - are drifting apart.  
To be sure, experimental verification is not required for theoretical advancement, 
but unchecked advances run the risk of being overly influenced by fashion 
(frequently linked to funding) and personal bias.  Predictions made in such 
equivocal circumstances are as apt to be discussed dramatically in the popular 
literature as soberly in technical journals.

And that brings us to the multiverse, and in particular the notion that not only 
is our perceived universe but one of many, but that the others may have 
bizarrely different properties.  If a theory is correct, and it does not preclude 
a thing, then that thing is a prediction, dependent upon constraints and 
circumstances.  If a theory allows for Flatland, then a Flatland universe may 
exist outside of our own.

A great hope of many theorists is that an Idea will come along (preferably 
an extension of the one they're working on) that will somehow lead to the 
inevitability of our universe, of its particles, dimensions and interactions, 
excluding Flatland and other unobserved variants.  Although not a String 
Theory acolyte myself, recent readings make it apparent that lately that hoped 
for inevitability - at least in the context of this most fashionable approach 
to unification - has taken several powers of ten steps backward.

This is a disappointment to those in the field, but it doesn't mean String theory 
is wrong, or even that a surfeit of solutions is a sign of a problem.  We can 
always adjust our perspective, made all the easier in this case given the 
absence of any way to verify the rightness or wrongness of any perspective 
we may wish to adopt.  And anyway M-theory is waiting in the wings, and order 
may ultimately once again be restored.

Meanwhile we are led to an almost Zen-like contemplation of the multiverse, 
and the possibility that ours is but one of many universes, and its characteristics 
a matter of chance (and lucky for us).  Some may relish this notion - hell, if 
it's true I'd relish it, as I would relish the arrival of extraterrestrials (friendly ones).  
However, let's not be too hasty.

There are indications from mathematics that there may be restrictions to the 



kinds of universes any hypothetical multiverse may contain.  First we have 
to accept that mathematics is in large part pan-universal.  Clearly if we become 
able to construct a Theory of Everything based on mathematics, and that Theory 
predicts other viable universes with different physics, then that same mathematical 
foundation will work in those other universes to imply the potential for the existence 
of our universe, and of us, which I find personally gratifying.

In our mathematics there are what I have termed resonances, dimensions in which 
things just seem to fall into place, where there is a wealth of interesting structures 
and symmetries absent or lesser in all other dimensions.  These are the dimensions 
1, 2, 4, 8 and 24.  

To illustrate this resonant quality we'll look at spheres.  In a Euclidean space of 
dimension k, the set of all points a fixed distance from a given point is the 
(k-1)-sphere.  In 3-space (where we live) the surface of a ball is a 2-sphere, 
each point being the same distance from the ball's center.  In 2-space 
(a piece of paper) we get the 1-sphere, which is just a circle.  Such a circle exists 
in 2-space but is a 1-dimensional object (a curved line).  Likewise the surface 
of a ball exists in 3-space but is 2-dimensional.  

There is another very important distinction between the 1-sphere and 2-sphere: 
if you cover a 2-sphere with an oil slick, it is impossible to set every molecule 
of the oil slick in linear motion at the same time.  There will always be at least one 
dead point where there can be no molecular motion save rotation.  For this reason 
it is impossible to cover the earth with a grid system (like longitude and latitude) 
that doesn't have poles.  At the poles the grid becomes in-determinant  in one 
dimension (what's the longitude at the North Pole?).  The 1-sphere on the other 
hand doesn't have this problem.  We have a common grid on the 1-sphere 
that fixes each point uniquely: degrees.  (In fact, we can add multiples of 360 
degrees and be at the same point, but that's not the same as having no definable 
value at all, like the longitude at the poles).  Likewise, put an oil slick around a circle 
and every molecule can be set in motion at the same time.  This property is called 
parallelizability. 

Interestingly, and somewhat astoundingly, there are only four values of k for 
which the (k-1)-sphere is parallelizable: k = 1, 2, 4 and 8.  Further, for each 
of these values of k the parallelizability of the (k-1)-sphere implies the existence 
of a division algebra.  These are, respectively, the real numbers, R, complex 
numbers, C, quaternions, H, and octonions, O (over the real numbers these 
algebras have respective dimensions 1, 2, 4 and 8).  And the existence of these 
division algebras gives rise to myriad other special objects.  (There are different 
ways to extend the sequence of division algebras to higher dimensions, and 
it was to forestall interest in these higher dimensional variants that I chose to 
introduce these algebras via the finite sequence of parallelizable spheres.  
No other dimension, save 24 (for different reasons), is as rich in interesting 
mathematical structures.  It is this resonant richness that is important, not 
the extendibility of one aspect of this richness by any concocted means.)



What does any of this have to do with physics?  Well, before proceeding 
I should explain that unlike Eugene Wigner, a founder of modern quantum 
theory, I do not at all find the effectiveness of mathematics in the natural 
sciences in any way unreasonable.  In fact, I believe that at their most profound 
depths mathematics and theoretical physics are the same.  This kind of thinking 
probably belongs to a school of thought founded by a dead Greek or two, but be 
that as it may, it is this belief that led me to assume that it would be impossibly 
surprising if physical reality and resonant mathematics were not found to be 
inextricably intertwined.

Early in the last century P.A.M. Dirac managed to unify the ideas of Special 
Relativity and Quantum Mechanics.  The resulting Relativistic Quantum 
Mechanics makes heavy use of matrix mathematics, and a model of the 
electron evolved in which it was represented mathematically by a column 
matrix of 4 variable complex numbers.  This is called a Dirac spinor, and 
it is naturally associated with 1,3-spacetime.  It is frequently useful, however, 
to consider the Dirac spinor as being built from two Pauli spinors (columns 
of 2 complex numbers), for it turns out the electron behaves differently 
depending on certain properties that vary at the level of these Pauli spinor 
parts of the whole Dirac spinor.  There are infinitely many kinds of spinors, 
but the Pauli and Dirac spinors are those associated with our space-time and 
our particles.

Interestingly each of the four division algebras, R, C, H and O, can also 
be viewed as a spinor space.  And this is also true of combinations of the 
division algebras.  For example, the complexification of the quaternions 
(denoted P = C⊗H) can be viewed as a pair of Pauli spinors, and if we form a 
column matrix of two such elements we get a pair of Dirac spinors.  Moreover, 
the fact that they come in pairs is a good thing, because elementary particles 
also come in pairs: the electron is paired with the electron neutrino; the 
up-quark with the down-quark; and so on.  The mathematics linking these 
pairs is the Lie group SU(2).  It is very interesting that the set of all unit 
quaternions is a copy of SU(2) (since H is 4-dimensional, the set of unit 
quaternions is topologically the same as the set of all points in 4-space a 
distance 1 from the origin, which is the 3-sphere, one of our four parallelizable 
spheres).

The notion that the 1,3-spacetime we perceive ourselves to live in may be 
but a part of some higher dimensional spacetime has been knocked around 
for many years, but String theory's 1,9-spacetime has received more 
attention than the alternatives.  Surprisingly this same spacetime arises 
from the mathematics of the division algebras.  The algebra T = C⊗H⊗O 
(the complexification of the quaternionization of the octonions ... it's 
actually a very simple joining of all three into one big algebra, each doing 
its own thing) bears the same relationship to 1,9-spacetime that P = C⊗H 
bears to 1,3-spacetime.  T is a kind of Pauli spinor for 1,9-spacetime, and 
doubling it gives rise to a Dirac spinor for 1,9-spacetime.



There are natural symmetries (Lorentz groups) associated with these 
spinors and spacetimes, and it is very interesting what happens to the 
symmetry of the 1,9-spacetime symmetry when we mathematically reduce 
the 1,9-spinors to 1,3-spinors.  As expected, the 1,9-Lorentz group 
reduces to the 1,3-Lorentz group, but two other bits of the 1,9-Lorentz 
group also survive: a U(1) piece; and an SU(3) piece.  The P and T spinors 
are already SU(2) doublets, so that leaves us with the reduced group, 
SO(1,3) x U(1) x SU(2) x SU(3).

This boils down to something pretty simple: the pieces of this reduced group 
are just those needed to describe the leptons and quarks of the Standard Model 
of elementary particle theory.  What's more, the resulting bits of the reduced 
T-spinor behave mathematically just like a family of leptons (electron and 
its neutrino) and quarks (up and down), together with its antifamily.

Granted, this result is not purely mathematical - some physics finds its way 
into the derivation.  The choice was made to reduce the 1,9-spinors to 
1,3-spinors because we physically experience a 1,3-spacetime.  On the 
other hand, P is associated with 1,3-spacetime, and it is one division algebra 
short of T, associated with 1,9-spacetime, so one could also argue in this 
and other ways that this reduction is mathematically natural.

Whatever the case, and whether or not one accepts that the form of our 
universe has anything to do with this remarkable mathematics/physics 
correspondence, it is undeniable that much of what we have come to accept 
about the mathematical nature of our physical reality is very precisely 
mirrored by these resonant mathematical structures.  Were we to hypothesize 
the existence of other universes with other physics, the resonant mathematics 
of the division algebras would not change in any of these alternate universes, 
and it would still mirror our universe, with its particular physics.  How far then 
can we be justified in postulating variations?  If our theories predict a multiverse 
populated with universes with widely diverging physics, how strange it would 
be that we happen to exist in a variant that so neatly meshes with the 
mathematics of the resonant dimensions, 1, 2, 4 and 8 (the final resonant 
dimension may also play a role, connected to the fact that we live in a universe 
with not just one family of leptons and quarks, but three)?  I suggest that it would 
be so strange as to be incredible, and that theories that are overly profligate 
with their multiverse predictions may be ruled out as a consequence.
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