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Exponential Function
Some familiarity with algebraic concepts is assumed, but as this material will stress
utility over rigor, there will be no theorems, axioms, corollaries or lemmas. So, when
we say that A and B are elements of an algebra, we understand that they can be added
(A + B), subtracted (A − B), and multiplied (AB), and in all cases the result is an
element of the same set we started with. And if x is a real number, then xA is also an
element of that set. Any generalizations of these ideas will occur as needed.

Let R be the algebra of real numbers, and C be the algebra of complex numbers. C
is 2-dimensional over the reals: each complex number z = x + iy has a real part and
imaginary part (x and y are real numbers, so x is the real part of z, and iy the imaginary
part).

In Lie group theory the exponential function is extremely important. The exponen-
tial of a real number is something one can easily determine by punching the number
into a calculator and hitting the ex button. The answer is a positive real number. But
a calculator figures out this answer by expanding the exponential function in a Taylor
series - and infinite polynomial sum (the calculator uses enough of the terms of the infi-
nite sum to be as accurate as its screen allows). The Taylor expansion of exp(A) = eA

is given below:

eA = 1 +A+
A2

2!
+
A3

3!
+
A4

4!
+ ...

If A is a real number, then the answer is a real number. But the righthand side of
this equation can be defined for many other kinds of algebraic objects. This expression
can be defined for any of the kinds of algebras we will deal with here. It uses algebraic
addition, multiplication, and the multiplication by scalars (real numbers). Mathemati-
cians worry about it being ”well-defined”, meaning that there is some unique algebraic
answer to the infinite sum. We’ll let them worry about that: all of our exponentials will
be well-defined.

One of the most beautiful equations in all of mathematics is the exponential of a
pure imaginary complex number:

eiθ = 1 + iθ − θ2

2! −
iθ3

3! + θ4

4! + ...

= 1− θ2

2! +
θ4

4! + ...{= cos(θ)}

= iθ − iθ3

3! + ...{= isin(θ)}

= cos(θ) + isin(θ).

A really big point to make here is the following: the only property of the complex unit
i used by this equation is i2 = −1. If u is an element of an algebra that has an identity
(1), and u2 = −1, then exp(uθ) = cos(θ)+usin(θ). We shall use this fact repeatedly
in what follows.
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The norm squared (length squared) of the complex number z = x + iy is: zz∗ =
(x+ iy)(x− iy) = x2 + y2, where z∗ = (x− iy) is the complex conjugate of z. The
complex conjugate of exp(iθ) is exp(−iθ) = cos(θ) − isin(θ), so the norm squared
of exp(iθ) is

(eiθ)(eiθ)∗ = (eiθ)(e−iθ) = cos2θ + sin2θ = 1.

That is, the set of all exp(iθ) is just the unit sphere (circle) in the 2-dimensional com-
plex plane. This set plays many roles. In particular, it is the 1-sphere, one of three
nontrivial parallelizable spheres (more anon); and it is the Lie group U(1).

Another example complicates matters a little: let u be as defined above, and let ρ
be a projection operator belonging to the same algebra. That is, ρ2 = ρ. Assume ρ
commutes with u. (ρ is an idempotent by definition, but in refering to it as a projection
operator stresses the idea that it acts on some space, which will almost always also
be an algebra in these pages; also note that not all spaces have nontrivial (not equal 1
itself) projection operators - and in fact division algebras do not, else they would not
be division algebras.) Consider the exponential exp(uρθ):

euρθ = 1 + uρθ + 1
2 (uρθ)

2 + 1
6 (uρθ)

3 + ...

= 1 + uρθ − 1
2ρ(θ)

2 − 1
6uρ(θ)

3 + ...

= 1− ρ+ ρ+ uρθ − 1
2ρ(θ)

2 − 1
6uρ(θ)

3 + ...

= 1− ρ+ ρ(1 + uθ − 1
2 (θ)

2 − 1
6u(θ)

3 + ...

= (1− ρ) + ρeuθ.

Note that (1−ρ)2 = (1−ρ), so (1−ρ) is also a projection operator. Also, ρ(1−ρ) =
ρ−ρρ = ρ−ρ = 0. So ρ and (1−ρ) are orthogonal projection operators. In particular,
ρ and (1− ρ) act on some space: they project subspaces, and these subspaces must be
orthogonal. Because of the equation above it is clear that the action of exp(uρθ) on this
space is nontrivial only on that subspace projected by ρ, while the subspace projected
by (1 − ρ) is left invariant. A good paradigm for all this is 2 × 2 real matrices, with
ρ = diag[1, 0]:

exp(i

[
1 0
0 0

]
θ) =

[
0 0
0 1

]
+

[
1 0
0 0

]
eiθ =

[
eiθ 0
0 1

]
.
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Parallelizable Spheres

The set of all unit complex numbers (norm 1 and can be written in the form exp(iθ))
is closed under multiplication (exp(ia)exp(ib) = exp(i(a + b)). This set fulfills all
the requirements of a Lie group (roughly: multiplicative closure; inverses; identity;
and the full set is a nice very smooth continuous set (manifold); we needn’t go into
elaborate rigorous detail - we’ll come to know them when we see them). This Lie
group is U(1). The Lie algebra associated with U(1) is the set from which U(1) is
derived via exponentiation. Hence the Lie algebra of U(1), which we denote u(1), is
the set {iθ : θ ∈ R} - the set of purely imaginary complex numbers.

The associated manifold is the circle, the 1-dimensional sphere. This manifold has
a special property: it is parallelizable (all Lie groups are, but only three spheres - al-
though two of these three parallelizable spheres are also Lie groups - more anon). This
can be visualized as follows: a manifold is parallelizable if it is possible to set all its
points in smooth flowing motion at the same time (a good example of a nonparalleliz-
able manifold is the 2-sphere (surface of a ball). There is always at least one point on
the surface of a ball that is stationary: it’s impossible to set them all in smooth motion
at once (the fact that the earth has poles is related to this)). It must be further specified
that at any point of the manifold the smooth flowing motion can flow in any direction.
Clearly this is an area where mathematical rigor would be of some use, but our inten-
tion here is simply to introduce the concept as a way of highlighting the exceptional
nature of the 1-, 3- and 7-spheres. Spin a 1-sphere and all the points move at once (not
so a 2-sphere). It’s clearly parallelizable.

The three hypercomplex division algebras are the complex numbers, C (2-d), quater-
nions, H (4-d), and octonions, O (8-d). Without getting too formal, these algebras are
characterized by various properties, all of which boil down to a simple idea: they
are all fundamentally very much like the complex numbers. And in particular, if A
and B are elements of one of these three algebras, and AB = 0, then either A = 0
or B = 0. Clearly then there can not be any nontrivial projection operators, for if
p (not equal to 1 (or 0, of course)) is a projection operator, then so is (1 − p), and
p(1 − p) = p − pp = p − p = 0. This contradicts the property above (no divisors of
zero), hence p can not exist.

The other big property has to do with the norm. For any A and B in any of these
algebras we can define norms (real lengths) ‖A‖ and ‖B‖, and these satisfy: ‖AB‖ =
‖A‖‖B‖ (norm of the product is the product of the norms).

The subsets of norm = 1 of each of these three algebras are unit spheres: respec-
tively, S1 (1-sphere = circle); S3 (3-sphere); and S7 (7-sphere). Suppose U and V are
elements of one of these spheres (‖U‖ = 1; ‖V ‖ = 1), then ‖UV ‖ = ‖U‖‖V ‖ = 1.
So these spheres are closed under multiplication - and division (the multiplicative in-
verse of any A is A−1 = A∗/‖A‖2).

Well, ok, these three spheres are closed under multiplication, they each possess
an identity (clearly ‖1‖ = 1), and there are multiplicative inverses, so they seem to
satisfy everything they’d need to satisfy to be Lie groups. And in fact the 3-sphere
(unit quaternions) is a Lie group (SU(2)), but the 7-sphere (unit octonions) is not, even
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though it satisfies all of those nice Lie group properties, and it is parallelizable. The
problem is, octonion multiplication is not associative, and in particular, if U , V and W
are elements of the 7-sphere, then we can NOT in general conclude that (UV )W =
U(VW ). And without that it’s just not a Lie group (the fact that the position of the
parentheses matters is extremely important, and in what follows we shall exploit this
fact to create from the octonions lots of Lie groups - in particular, SO(8) and SU(3)).

By the way, if U is a unit element of one of these three division algebras, and U is
not the identity, then for any other unit element V , UV 6= V . That is, multiplication
by U on the k-sphere (k=1,3 or 7) moves every element of the sphere (and smoothly).
Hence the properties defining a division algebra imply these unit k-spheres are paral-
lelizable. Of the three the 7-sphere is the only surprise: it is the only parallelizable
manifold (with a suitably defined multiplication (I’ve forgotten the details)) that is not
also a Lie group. And while we’re at stressing the uniqueness of things, there are ONLY
THREE hypercomplex division algebras (normed, with unity, and perhaps a condition
or two more you’ll have to look up), and this is equivalent to the fact that there are
ONLY THREE parallelizable spheres, and this is equivalent to other unique properties
in other mathematical realms. In particular, one can construct spheres of other dimen-
sions, but none will be parallelizable and none associated with a division algebra; and
one can construct algebraic generalizations of C, H and O, but none will yield more
division algebras nor be associated with other parallelizable spheres.

We have here a closed context of extremely unique and generative mathematical
objects (generative?: for example, all the classical Lie groups are associated with R, C,
H or O - R is also a division algebra; its associated unit sphere consists of two points,
+1 and -1). I personally do not believe that there is much to gain by generalizations,
for they do not carry with them the myriad associated special properties. Mathematics
seems to resonate at these special dimensions (1,2,4,8), and no others in the same way
or to the same extent (although we will look at 24 as well, a dimension that resonates
in a different way (for an introduction to that, look at ”Sphere Packings” by Conway
and Sloane)).
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Quaternions: Lie Groups, Clifford Algebras and Spinors

Let qj , j = 1,2,3, represent the pure imaginary quaternion units (let q0 = 1). The
multiplication table of the pure quaternion units is cyclic ( q1q2 = q3 ⇒ q2q3 = q1 ⇒
q3q1 = q2). Add to this the fact that these units anticommute and you’ve got the whole
multiplication table. It’s interesting to represent these units by matrices, and our first
representation will be by real 4x4 matrices. For example:

q1


q0
q1
q2
q3

 =


q1
−q0
q3
−q2

 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0



q0
q1
q2
q3


Note: because the H imaginary units anticommute, multiplication by this same element
from the right will yield a different matrix (the lower right block is the negative of that
given above). So, we have the identity from q0 (left or right multiplication), three
matrices by left multiplication of imaginary units, and three by right multiplication.
And then there are 9 = 3x3 from simultaneous left/right multiplication by imaginary
units (indices = 1,2,3). That makes 1+3+3+9 = 16 in all, and in fact these 16 matrices
form a basis for the 16-dimensional real algebra of 4x4 real matrices (R(4)).

If you bother to compute the 3 left multiplication matrices, and 3 right multiplica-
tion matrices, you will find that the left (or right) multiplication matrices anticommute
with one another, but each of the left multiplication matrices commutes with each of
the right multiplication matrices. The adjoint algebra of left actions of H on itself com-
mutes with the adjoint algebra of right actions (as we will see, this is related to the
following Lie algebra identity: so(4) = su(2) × su(2); i.e., the 6-dimensional Lie
algebra so(4) consists of two commuting copies of the 3-dimensional su(2)).

The fact that H acting on itself from the left and from the right gives rise to two
distinct and commuting copies of H actions suggests that it would be worth our while
to distinguish the algebras of left actions, right actions, and H itself, the algebra on
which these adjoint algebras act:
• H: quaternion algebra itself; basis qm, m=0,1,2,3;
• HL: adjoint algebra of left actions of H on itself; basis qLm, m=0,1,2,3;
• HR: adjoint algebra of right actions of H on itself; basis qRm, m=0,1,2,3.

Why bother with three copies of the same algebra? Because the quaternions are
noncommutative, and there really are three different copies. Using all three makes it
very easy to connect the quaternions to some important Lie groups, Clifford algebras
and spinors.

Any pure imaginary quaternion, A, can be written in the form uθ, where u is a
unit imaginary quaternion (so an element of a 2-sphere; don’t forget, the space of
imaginary quaternions is 3-dimensional), and θ = ‖A‖, the positive real magnitude
of A. The element u behaves just like the complex imaginary i when exponentiated,
because u2 = −1. Therefore, eA = exp(uθ) = cos(θ) + usin(θ). This is also a
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unit quaternion, although not a pure imaginary one. In fact, any unit quaternion can
be written in this form. Hence the set {eA : A linear in qk, k = 1, 2, 3} = {U ∈ H :
‖U‖ = 1} = S3 = 3-sphere.

This set is also closed under multiplication, and since it is associative, it is a Lie
group, in this case SU(2) (that is, the ”shape” of SU(2) is that of a 3-sphere). The
associated Lie algebra, su(2), has a basis, qk, k = 1,2,3 (3-dimensional, as is SU(2)
itself). That is, SU(2) is obtained from the elements of su(2) via exponentiation. Note
that a Lie algebra by definition uses the commutator product, under which the set of all
elements linear in qk, k = 1,2,3, is closed.

However, Lie groups invariably appear in physics as actions on some space, not
as some abstract mathematical object unconnected to anything else. In order to make
connection with those ideas we have to start using the adjoint algebras.

Let A be a pure imaginary quaternion as on the previous page, so U = eA is an
element of SU(2) = 3-sphere. Suppose this SU(2) acts on some space, M . Well, does
U act on M from the left or right? It can do either, and it matters. M has a copy of H
in it, and it’s this copy that receives the action of U .

Given A = Akqk, sum k=1,2,3,

define AL = AkqLk, and UL = exp(AL);

define AR = AkqRk, and UR = exp(AR).

So UL[M ] = UM , and UR[M ] = MU , and both of these are SU(2) actions,
but they’re distinct SU(2)’s, and the left action SU(2) commutes with the right action
SU(2) (because H is associative).

By the way, using UL and UR we can construct a copy of SO(3), the automorphism
group of H. In particular, if X ∈ H, then ULU−1

R [X] = UXU−1 leaves the real part
of X alone and performs an SO(3) rotation on the imaginary 3-dimensional part (the
reader should see this action is obviously a H automorphism).

H is also a Clifford algebra, and an integral part of Clifford algebra theory. How-
ever, Clifford algebras also act on some space (which are called spinor spaces), so we
should once again specify the direction of action. Let CL(p, q) be the Clifford algebra
of the real pseudo-orthogonal space with signature p(+), q(-). Then QL is isomorphic
to CL(0, 2), a 1-vector basis being {qL1, qL2}, and the sole 2-vector basis element:
qL3 = qL1qL2. Likewise HR is isomorphic to CL(0, 2).

What if we allow elements of both HL and HR? We’ll denote by HA the algebra of
combined left/right actions of H on itself. This algebra is isomorphic to R(4) (hence
also to CL(3, 1) and CL(2, 2)). But this is a path down which I haven’t the patience at
present to trod. Time for octonions.
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Octonions: Lie Groups, Clifford Algebras and Spinors

The octonion units will be denoted ea, a = 0, 1, 2, ...,7, e0 = 1, the identity, and
the most commonly used octonion multiplication table for the remaining 7 units is
determined by eaea+1 = −ea+1ea = ea+3, where these values cycle through the set
{1,2,3,4,5,6,7}.

Like we did for the quaternions, if A is an imaginary octonion (no real part), then
A = uθ, where ‖u‖ = 1, and ‖A‖ = θ, so u is an element of the imaginary octonion
unit 6-sphere and is the direction of A, and θ is the magnitude of A. Again, u2 = −1,
so u behaves like i when exponentiated, and eA = euθ = cos(θ) + usin(θ). The set
of unit octonions = {eA : A imaginary} = S7 = 7-sphere. Again, since ‖XY ‖ =
‖X‖‖Y ‖, X and Y arbitrary octonions, this 7-sphere is closed under multiplication,
and it is easily shown to be parallelizable. But it is NOT a Lie group, because it is not
associative, and hence it can NOT be represented by a matrix algebra.

But there are real matrices associated with the octonions, and lots of Lie groups.
(Note: I said these matrices are associated with the octonions, not that they represent
the octonions. I’ve seen lots of papers claiming to represent the octonions by real
matrices - or complex. Can’t be done. There are associations that can be made, but
real and complex matrix algebras are necessarily associative, hence whatever algebra
results is not the octonion algebra - it’s something else. Don’t be fooled by substitutes
- look for the real octonion label. Of course, if you adopt a multiplication other than
conventional matrix multiplication, anything can be done, and I do this elsewhere on
this site, but my motivation is pure, and the result beautiful.)

As we did with the quaternions, we can make some obvious associations:

e1



e0
e1
e2
e3
e4
e5
e6
e7


=



e1
−e0
e4
e7
−e2
e6
−e5
−e3


=



0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0
0 0 0 −1 0 0 0 0





e0
e1
e2
e3
e4
e5
e6
e7



e2



e0
e1
e2
e3
e4
e5
e6
e7


=



e2
−e4
−e0
e5
e1
−e3
e7
−e6


=



0 0 1 0 0 0 0 0
0 0 0 0 −1 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0





e0
e1
e2
e3
e4
e5
e6
e7


There is a unique matrix derived in this way for each of the 8 basis units (including the
identity). Like the imaginary octonion units themselves, the 7 matrices associated with
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the imaginary octonion basis units anticommute, but unlike the octonion units, these
matrices do not close under multiplication. In fact, via matrix products and sums they
generate all of R(8) = CL(0, 6), a 64-dimensional algebra. However, although the
product of the two matrices above may not be associated with a single octonion unit,
it is in fact associated with a more complicated octonion action arising out of octonion
nonassociativity.

ForX an arbitrary octonion, the first matrix is associated with the action, eL1[X] =
e1X , the second matrix with the action eL2[X] = e2X , and the product of the second
matrix times the first with the action: eL12[X] = e1(e2X). (Ignore the fact that the
matrix product is associated with the reverse octonion product; what’s important is
that the product is in fact associated with this embedded action involving two octonion
units; we won’t be using the matrices after this.)

Define the general left embedded adjoint action of O on itself by

eLab...c[X] = eLaeLb...eLc[X] = ea(eb(...(ecX)...)).

It can be shown that
eL123456[X] = eL7[X]

for X ∈ O. Also, for distinct a, b ∈ {1, 2, ..., 7},

eLaeLb = eLab = −eLba = −eLbeLa.

Also, eLaeLa = −1. All together this implies that a complete basis for the algebra of
left action of O on itself (OL) consists of:

the identity, 1;

the 7 distinct eLa;

the 21 distinct eLab;

and the 35 distinct eLabc,

where a, b, c ∈ {1, 2, ..., 7}.
Consequently OL is 64-dimensional, and it is isomorphic to R(8) = CL(0, 6). The

spinor space of R(8) = CL(0, 6) is the space of 8× 1 real column matrices; the spinor
space of OL = CL(0, 6) is O itself. In both cases the spinor space is 8-dimensional.
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A 1-vector basis for OL = CL(0, 6) is eLp, p = 1, ..., 6 (as we saw above, the
7-vector basis is the element eL7). The 2-vector basis of CL(p.q) can be thought of as
the Lie algebra so(p, q), hence

so(0, 6) = so(6) −→ {eLpq, p, q = 1, ..., 6}.

Two other Lie algebras while we’re at it:

so(7) −→ {eLab, a, b = 1, ..., 7};

so(8) −→ {eLab, eLc, a, b, c = 1, ..., 7}.

The automorphism group of the octonions is the exceptional Lie group G2, and
we’ll denote its Lie algebra LG2. As was shown in the book, if a,b,c,d are distinct
indices from 1 to 7, and eaeb = eced, then eLab − eLcd ∈ LG2, and the space spanned
by elements of this form is 14-dimensional.

For example, let u = 1
2 (eL56 − eL37). Using the fact that eL7654321 = 1, we can

show that u2 = −p = − 1
2 (1 − eL421), and u3 = −pu = −u. Note that u4 = p2 =

−puu = −uu = p, so p is a projection operator. All this implies

euθ = (1− p) + p(cos(θ) + usin(θ)) ∈ G2.

Therefore, euπ = (1 − p) − p = eL421. This has the following action on the basis of
O : eL421[ek] = ek, k = 0, 1, 2, 4, and = −ek, k = 3, 5, 6, 7. This is a sign changing
automorphism, and there’s one for each of the 7 quaternionic triples of octonion units.

Finally, if p,q,r,s are distinct indices from 1 to 6 (note: 7 is singled out for both
historical and mathematical reasons), and epeq = eres, then eLpq − eLrs ∈ su(3), a
subalgebra of LG2. This Lie algebra generates a subgroup of G2 that leaves e7 invari-
ant (obviously there is a copy of SU(3) in G2 for every imaginary octonion direction,
so G2/SU(3) is the 6-sphere with opposite points identified).

One of the more interesting consequences of octonion nonassociativity is OL =
OR. That is, if we define eRab...c[X] = (...((Xea)eb)...)ec, then the algebra of actions
spanned by elements of that form (OR) is exactly the same as OL (recall that while
HL and HR are isomorphic, they are in fact distinct). It should not be surprising that
OL = OR, for the spinor space of both is 8-dimensional O, and as OL is isomorphic
to R(8), there are no actions on the spinor space not accounted for by OL.

One can connect the two adjoint algebras in the following way: if a,b,c,d,r,s,u,v are
8 distinct indices from 0 to 7, and eaeb = eced = eres = euev , then

eLab =
1

2
(−eRab + eRcd + eRrs + eRuv),

eRab =
1

2
(−eLab + eLcd + eLrs + eLuv).

(Note: one of these indices must be 0; it can be deleted from these equations.) Conse-
quently, if none of the indices a,b,c,d is 0, then eLab − eLcd = −eRab + eRcd. That is,
LG2 (and so also su(3)) looks very much the same in OR as it does in OL.

9


