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Abstract

The integral octonions arise from the octonion XY-product. A parallel is shown to exist with the quater-
nion Z-product. Connections to the laminated lattices in dimensions 4, 8, 16 and 24 (Leech) are developed.
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1. Octonion Multiplication and XY-Product Variants.
Given any multiplication table for the 8-dimensional octonion algebra, O, one can construct an infinite num-
ber of variants, isomorphic to O itself, by replacing the original product with the XY-product [1],

A ◦XY B := (AX)(Y †B), (1)

where Y X† must be a unit octonion, and is the identity of the new multiplication. The octonion identity is
left unchanged in the case Y † = X−1, giving rise to the X-product [2]:

A ◦X B := (AX)(X−1B). (2)

In what follows, let ea, a = 0,...,7, represent the 8 octonion units, with e0 = 1 the identity (in [3] [4]
the index ∞ is used for the identity, but the index choice 0 makes it easier to program computers to do
calculations). Our starting multiplication table is the commonly chosen cyclic multiplication:

eaea+1 = ea+3, a = 1, ..., 7, (3)

where the indices are taken modulo 7, from 1 to 7. This particular table is invariant with respect to both index
cycling and index doubling. That is,

eaeb = ec =⇒ ea+1eb+1 = ec+1,
eaeb = ec =⇒ e2ae2b = e2c.

2. Λ8 Lattices.
Representations of the E8 = Λ8 lattice arise from the X-product [5]. In particular, using indices a, b, c, d ∈
{0, ..., 7}, define

Ξ0 = {±ea},
Ξ2 = {(±ea ± eb ± ec ± ed)/2 : a, b, c, d distinct,

ea(eb(eced)) = ±1},

Ξeven = Ξ0 ∪ Ξ2,
Eeven8 = span{Ξeven},

Ξ1 = {(±ea ± eb)/
√

2 : a, b distinct},
Ξ3 = {(

∑7
a=0±ea)/

√
8 : even number of +’s},

Ξodd = Ξ1 ∪ Ξ3,
Eodd8 = span{Ξodd}

(4)

(spans over the integers, Z). Ξeven has 16 + 224 = 240 elements, and Ξodd has 112 + 128 = 240 elements, each
a representation of the inner shell of an E8 lattice. (One may think of these Λ8 lattices as discrete versions of
S7, the algebra of unit octonions.)

These elements have an interesting relation to our chosen octonion multiplication: for all X ∈ Ξeven ∪
Ξodd, and for all pairs of octonion units ea, eb, there exists a unit ec such that

ea ◦X eb = ±ec. (5)

1



3. Integral Octonions and the X-Product.
In section 5 we look at the laminated lattice Λ4 over the quaternion algebra H. This algebra is known to be
closed with respect to quaternion multiplication, giving rise to the algebra of integral quaternions. However,
surprisingly, the Λ8 lattice Eeven8 does not close with respect to our given octonion multiplication. Weirdly,
the set Ξeven[0 − a], derived from Ξeven by replacing each occurrence of e0 in elements of Ξeven with ea,
and vice versa, is multiplicatively closed. However, the X-product can be used to ”fix” this weirdness.

Define
`0 =

1

2
(1 + e1 + e2 + e3 + e4 + e5 + e6 + e7). (6)

Note that `0, like our multiplication table, is invariant with respect to index cycling and doubling. Therefore,
the X-product

A ◦`0 B = (A`0)(`−10 B) (7)

is also invariant with respect to index cycling and doubling. Its multiplication table is in some sense dual to
that given above:

ea ◦`0 ea+2 = ea+3, a = 1, ..., 7.

What about the X-product
A ◦`−1

0
B = (A`−10 )(`0B)? (8)

Since `−10 = 1
4 (1 − e1 − ... − e7) has an odd number of plus signs (as coefficients of the units), we don’t

expect the product of any two units to be another unit using this X-product. For example,

e1 ◦`−1
0

e2 =
1

2
(e3 − e5 + e6 + e7).

While the value on the righthand side of this equality is not an octonion unit, it is an element of Eeven8 , as are
e1 and e2. This is a specific example of a more general result given below.

X-Product Integral Octonion Result

X ∈ Ξodd, and A,B ∈ Ξeven =⇒ A ◦X† B ∈ Ξeven. (9)

Proof:
To prove (9) we will set up a partial multiplication table for the Ξm (since these sets are finite, proving these
results even with a computer is not difficult). In general,

A ∈ Ξeven, and Y ∈ Ξodd =⇒ Y A ∈ Ξodd, AY † ∈ Ξodd†,

and
X,Y ∈ Ξodd =⇒ Y †X ∈ Ξeven.

(Interestingly these results are not commutative. For example, X ∈ Ξ1, and Y ∈ Ξ3 =⇒ Y X,XY † ∈
Ξeven[0− a], (a 6= 0).) Therefore,

X ∈ Ξodd, and A,B ∈ Ξeven =⇒ AX† ∈ Ξodd† and XB ∈ Ξodd =⇒ A ◦X† B = (AX†)(XB) ∈ Ξeven.

That is, Ξeven, which is not multiplicatively closed with respect to the given octonion product, is closed with
respect to these X-products. 2

As a corollary, given the identity
A(BX) = (A ◦X† B)X.

we see that Ξeven closes as a set of actions on each X ∈ Ξodd, and more generally on Ξodd itself [7]. Note
that of all the Ξk, only Ξ3 is not invariant with respect to octonion conjugation.
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4. Integral Octonions, the XY-Product and Λ16 Lattices.
The set of X,Y ∈ O satisfying the property that for all units ea and eb there exists some unit ec such that,

ea ◦XY eb = (eaX)(Y −1eb) = ±ec, (10)

gives rise to two copies of Λ16 [8]. In particular, (10) is satisfied if X ∈ Ξeven ∪ Ξodd, and there exists some
unit ed such that Y = ±edX . In the case Y −1 = X−1e†d one can show using X-product identities that for all
A,B ∈ O,

(AX)((X−1e†d)B) = A ◦X (e†d ◦X B). (11)

If X−1 ∈ Ξodd, then Ξeven is closed with respect to X-product multiplication. If A,B ∈ Ξeven, then
C = (e†d ◦X B) ∈ Ξeven, so A ◦X C ∈ Ξeven. That is,

A,B ∈ Ξeven and X−1 ∈ Ξodd =⇒ (AX)((X−1e†d)B) ∈ Ξeven.

So Eeven8 are octavian integers with respect to this XY-product. The identity of this set of integers is just ed.
But (9) can clearly be generalized even further:

XY-Product Integral Octonion Result

A,B ∈ Ξeven and X,Y ∈ Ξodd† and |XY −1| = 1 =⇒ A ◦XY B ∈ Ξeven. (12)

Proof:
In general, and on the assumption my computer code was without error:

ΞevenΞodd† = Ξodd†,
ΞoddΞeven = Ξodd,
Ξodd†Ξodd = Ξeven.

Therefore, generalizing the results above:

(ΞevenΞodd†)(ΞoddΞeven) = Ξodd†Ξodd = Ξeven,
(ΞoddΞeven)(Ξodd†Ξodd) = ΞoddΞeven = Ξodd,
(Ξodd†Ξodd)(ΞevenΞodd†) = ΞevenΞodd† = Ξodd†.

So there exist XY-products under which each of these lattice inner shells, Ξeven, Ξodd, and Ξodd†, is multi-
plicatively closed. 2

In [3] there are seven copies of the octavian integers defined starting from Ξeven, but needing that strange
switching of indices in each case to make the set multiplicatively closed (Ξeven[0− a]). We see here that the
XY-product can be used to unravel the octavian integers so that we need only use Ξeven, not a rotated copy.
This is reminiscent of the way the XY-product unravels triality [9]. In particular, for all g ∈ SO8 acting on
O there exist unit elements X,Y ∈ O (not unique) such that for all A,B ∈ O,

g[A ◦XY B] = g[A]g[B]. (13)

That is, replacing our starting product with the XY-product on the left hand side above means we needn’t
perform triality rotations on g to achieve equality. If g ∈ G2, the automorphism group of O, then X = Y =
±1, so g[AB] = g[A]g[B].
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As to Ξeven[0− a] being multiplicatively closed, note that if we define da = (1 + ea)/
√

2, then

Ξeven[0− a] = daΞevenda.

Therefore, exploiting a Moufang identity and the result (12) above, noting that da ∈ Ξodd and da ∈ Ξodd†,

Ξeven[0− a]Ξeven[0− a] = (daΞevenda)(daΞevenda)
= da((Ξevenda)(daΞeven))da
= da(Ξeven)da = Ξeven[0− a].

That is, Ξeven[0− a] are octavian integers as a consequence of a special application of (12).

5. Integral Quaternions, the Z-Product and Λ4 Lattices.
The 4-dimensional quaternion algebra, H, is associative, so for all A,B,X ∈ H, X 6= 0, (AX)(X−1B) =
AB. H hasn’t got an X-product like that defined for O. But the generalization of the XY-product leads to the
following definition of the quaternion Z-product:

(AX)(Y †B) = AXY †B = A •Z B = AZB, (14)

where Z = XY † must be s unit quaternion. The automorphism group of H is SO3. A general element of the
full SO4 group of actions on H takes the form

g[A] = UAV −1, (15)

with V −1U a unit quaternion. Let Z = V −1U , then

g[A •Z B] = g[A]g[B]. (16)

If g ∈ SO3, then Z = 1, and g[AB] = g[A]g[B]. So the quaternion Z-product bears the same relationship to
SO3 and SO4 as the octonion XY-product bears to G2 and SO8.

Let qm, m = 0,1,2,3, be a quaternion basis, with q0 the identity. Define

Υ0 = {±qm},
Υ2 = {(±qm ± qn ± qr ± qs)/2 : m,n, r, s distinct,
Υeven = Υ0 ∪Υ2,
Deven

4 = span{Υeven},

Υ1 = {(±qm ± qn)/
√

2 : m,n distinct},
Υodd = Υ1,
Dodd

4 = span{Υodd}

(17)

Both Υeven and Υodd have 24 elements, and constitute the inner shells of D4 lattices. The elements Υeven

are the Hurwitz units of the set of Hurwitz integers (see [3]). They are multiplicatively closed. That being
the case, Υeven is multiplicatively closed using the Z-product for all Z ∈ Υeven. If X,Y ∈ Υodd and the
Z-product with Z = XY † preserves quaternion units (qm •Z qn = ±qk), then there exists some index j such
that Y = ±qjX . Above we saw that in expanding this unit preserving property from the X-product to the
XY-product led to an expansion of associated E8 = Λ8 lattices to Λ16. Here we get an expansion of D4 = Λ4

to E8 = Λ8. I will not work out the details here. They are similar to the more complicated case developed in
[8]. I conclude this section by noting that Υeven is closed under the Z-product for Z = XY † ∈ Υeven.
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6. Octonion Triples and the Leech Lattice.
Before proceeding we’ll define variations on the Ξk:

A0 = {±ea},
A2 = {(±ea ± eb ± ec ± ed)/2 : a, b, c, d distinct,

ea(eb(eced)) = ±1},
Aeven = A0 ∪ A2,

A1 = {(±ea ± eb) : a, b distinct},

A3 = {(
∑7

a=0±ea)/2 : even number of +’s},
a, b, c, d ∈ {0, ..., 7},

Aodd = A1 ∪ A3.

The only change is to the odd elements, which now have rational coefficients 1 and 1
2 . So these elements are

no longer unit octonions, and `0 ∈ Aodd. Still, in general, if U ∈ Ak, any k, then for all basis elements ea
and eb there exists an ec such that

(eaU)(U−1eb) = ±ec = (ea(ebU))U−1. (18)

The last equality follows from Moufang identities, and it implies by induction that for an arbitrary set of
octonion units ea, eb, ... ed there exists a unit ec such that

ea(eb(...(edU)...)) = ±ecU. (19)

That is, nested products of units from the left on any U ∈ Aeven∪Aodd collapse to a product of a single unit,
to within a sign. In each case, the resulting unit ±ec depends upon U .

In [10] I introduced a representation of the Leech lattice over O3. Quite frankly, I no longer have much
of an idea how I arrived at this representation, but more recently Robert Wilson [11], applying more rigorous
and reproducible mathematical methods, independently derived a representation of Λ24 over O3 that I will
show verifies my initial guess.

In both our papers the final result breaks up the inner shell of Λ24, which is of order 196560, into three
subsets with orders 3× 240 = 720, 3× 240× 16 = 11520, and 3× 240× 16× 16 = 184320, the sum of all
three orders being 196560. The biggest of these subsets is the one I want to focus on. Translating Wilson’s
notation into my own, the elements of this subset take the form

( (P`†0)ea, ±Pec, ±(Pea)ec ),

where P ∈ Aodd†, the two ± signs are independent, the indices a, c ∈ {0, ..., 7} are independent, and to
achieve the full subset we include all permutations of these three octonion components. As a first step in
connecting to my representation we take the conjugate of each of the three components,

( ea(`0P ), ±ecP, ±ec(eaP ) ),

where now it is understood that P ∈ Aodd, and although it may seem like I am playing fast and loose with
the signs, as long as we have two independent ± signs on two of these three terms all is ok. Next we cyclicly
permute these three terms to the left, keep the ± signs on the second two, and replace P with ecP (keep in
mind, this result takes advantage of sign flexibility):

( P, ±ec(ea(ecP )), ±ea(`0(ecP )) ).
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The two ec units appearing in the second component cancel (the resulting sign change we absorb into the ±),
leaving us with

( P, ±eaP, ±ea(`0(ecP )) ) = ( P, ±eaP, ±(ea`0ea)(ebP ) ), (20)

where eb depends on ea, ec, and P . To within multiplication by a scalar, this is now in the form of the
representation presented in [10] (and I owe a big debt to Robert Wilson for putting that representation on a
firm mathematical footing).

The remaining elements of this representation of the Leech lattice, also conforming to [10] and [11], take
the forms,

( 2Q, ±2eaQ, 0 ) = ( `†0P, ±ea(`†0P ), 0 ), (21)

where Q ∈ Aeven, or P = `0Q ∈ Aodd, and we include all permutations (3× 240× 16 = 11520 elements,
and note that (`†0)−1 = 1

2`0)), and
( 2P, 0, 0 ), (22)

where P ∈ Aodd, and we include all permutations (3× 240 = 720 elements).

7. Motivation.
This paper has ostensibly nothing to do with physics, but my purpose in exploring these ideas does. For
years I pursued applications of the four division algebras, R, C, H and O, to physics, and these efforts met
with considerable success [12]. The dimensions of these algebras, 1, 2, 4, 8 (= 2k, k = 0, 1, 2, 3), are
mathematically resonant. This finite sequence of integers is associated with myriad generative mathematical
notions. But this sequence does not include the integer 24, nor does it make sense that it should. There is
another finite sequence I suggest that is resonant in a different way: 1, 2, 8, 24. This tidbit from Wikipedia in
speaking about the Leech lattice:

”This arrangement of 196560 unit balls centred about another unit ball is so efficient that there
is no room to move any of the balls; this configuration, together with its mirror-image, is the
only 24-dimensional arrangement where 196560 unit balls simultaneously touch another. This
property is also true in 1, 2 and 8 dimensions, with 2, 6 and 240 unit balls, respectively, based on
the integer lattice, hexagonal tiling and E8 lattice, respectively.”

As we have seen, Λ24 can be nicely represented in the 24-dimensional O3. Likewise, Λ8 = E8 has a nice
representation in H2 (as well as in simply O), and Λ2 and Λ1 find their most natural expressions in C1 and
R1, respectively. In [13], inspired by all of this, I took the algebra T = R⊗C⊗H⊗O, which in part found
a roll of my application of the division algebras to physics in my hyper-spinor space T2, and expanded this
to

T6 = R1 ⊗C1 ⊗H2 ⊗O3.

The spinor space T2 elegantly accounts for one generation (family) of quarks and leptons (and their anti-
particles), but theoretical consensus puts the total number of families at three. Clearly, if T2 accounts for
one family, then T6 would account for three, but the dimensionality of T6 is wrong for a conventional spinor
space. I do not view this as a deterrence, but as indication that the mathematical tools needed to fully exploit
T6 may not yet be available to us. My suspicion is that ternary algebras may be involved ([14]). Λ8, as we
have seen, can be given an algebraic structure, turning this lattice into the octavian integers. The question is:
can Λ24 be given its own algebraic structure, perhaps involving a ternary multiplication? No idea yet.
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Finally, and to cement the notion that I may be barking mad, I present some possibly coincidental nu-
merology thoughts. The two finite sequences of resonant dimensions given above are

n 1 2 3 4
Fn 1 1 2 3

1
22n 1 2 4 8

1
2Fn2n 1 2 8 24

and Fn are the first 4 numbers in the Fibonacci sequence, starting from n = 1.
Why should the Fibonacci sequence have anything to do with this finite sequence of dimensions associated

with special lattices? No idea, and I wouldn’t mention it at all except for the following coincidences relating
to the sequence of corresponding kissing numbers, 2, 6, 240, 196560, for the associated lattices, Λ1, Λ2, Λ8,
Λ24:

3∏
k=1

Fk = 2,

4∏
k=1

Fk = 6,

6∏
k=1

Fk = 240,

8∏
k=1

Fk =
196560

3
.

Why 3,4,6,8? Not sure, although each is 1 plus a prime for the first 4 primes, 2,3,5,7. So? Not sure. Haven’t
a clue. I’d like a clue, but - sadly - I don’t have one.

8. Some thoughts from the original version of this paper.
The sets Ξk defined in (4) are associated with our chosen multiplication table defined in (3). Any change
in the multiplication table will result in a change in these sets. Each element X in some Ξk gives rise to an
X-product variant of our original multiplication table that takes octonion units to units (see (5)). Associated
with this new multiplication table will be an altered collection of sets like our original Ξk. We will denote
these altered sets

XΞk.

In particular, the sets XΞ0 and XΞ1 will not be altered, as they are independent of the multiplication table.
However,

XΞ2 = {(±ea ± eb ± ec ± ed)/2 : a, b, c, d distinct, ea ◦X (eb ◦X (ec ◦X ed)) = ±1},

and XΞ3 will be similar to Ξ3, with the number of minus signs in the sum being odd or even, depending on
the product.

One of the remarkable properties of the octonions is that any sum of nested products from the left (or
right) can be expressed as a sum of nested products from the right (or left). In particular, for all X in some
Ξk, and all indices a = 1,...,7,

Xea =
1

2
(−eaX + ep(eqX) + er(esX) + eu(evX)), (23)

where the indices a,p,q,r,s,u,v are distinct, accounting for all the indices from 1 to 7, and epeq = eres =
euev = ea. Using the identity (20) we can rewrite (27):

Xea =
1

2
(−ea + ep ◦X eq + er ◦X es + eu ◦X ev)X.

By (5) this reduces to,

Xea =
1

2
(−ea ± eb ± ec ± ed)X = PX.
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P must have a norm 1, and the only way for such a linear combination of octonion units to have norm 1 is if
either P = ±em (eg., this certainly occurs if X = ±1), or if all the indices a,b,c,d are distinct. Because the
original set of 7 indices accounted for all the indices from 1 to 7, in this latter case the remaining 4 indices
above must satisfy

ea ◦X (eb ◦X (ec ◦X ed)) = ±1.

So in general,
Xea = PX, with P ∈ XΞeven.
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