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The link of the Division Algebras to 10-dimensional spacetime and one
leptoquark family is extended to encompass three leptoquark families.



The origins of this work can be found in [1]. That book contains La-
grangians, interactions, and in general a more detailed development of the
physics resulting from

T = C ⊗H ⊗O

than has been presented elsewhwere.

• C - complex numbers: associative, commutative, basis {1, i};

• H - quaternions: associative, noncommutative, basis {1 = q0, q1, q2, q3};

• O - octonions: nonassociative, noncommutative, basis {1 = e0, e1, ..., e7};

My subsequent work on these division algebras has been largely mathemati-
cal. Some of it deals with a more elegant derivation of the Standard Symmetry
and lepto-quark family structure than is found in [1] (see [2,3]). This work ac-
counts neatly for family structure, but it has not until now accounted for family
replication.

• KL, KR - the algebras of left and right actions of an algebra K on itself.

• KA - the algebra of combined left and right actions of an algebra K on
itself.

• K(m) - m×m matrices over the algebra K;

• Km - and m×1 column over K;

• CL(p, q) - the Clifford algebra of the real spacetime with signature (p+,q-).

If we let P = C⊗H, then PL is isomorphic to the Pauli algebra, so PL(2) is
isomorphic to the Dirac algebra, and HR, which commutes with PL(2) (which
acts on H2), provides an internal SU(2) degree of freedom.

One can do much the same thing [1,2] with T. TL is a Pauli-like algebra, and
TL(2) is the Dirac algebra of 1,9-spacetime. Again there remains the internal
HR commuting with TL(2), providing an isospin SU(2). The associated spinor
space (T2) transforms with respect to the standard symmetry as the direct sum
of a leptoquark family and antifamily of 1,3-Dirac spinors.

But why should we need 2x2 matrices acting on T2? And where are the
other two families? To answer the second question I’ll aggravate the first. In
particular, we’ll assume our spinor space is not just T2, but

C ⊗H2 ⊗ O3 = T6,

which is acted upon by TA(6). (Octonion triples play important roles in many
areas - derivations of the Leech lattice, the exceptional Jordan algebra, triality
- which lends support to the idea that this expansion may be natural.)

Obviously, since T2 accounts for one family/antifamily, T6 would account
for three, which is the accepted number of total families. However, in [2] the
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algebra TL(2), which acts on T2, is isomorphic to a Clifford algebra (the com-
plexification of CL(1, 9)). Since all Clifford algebras are 2k-dimensional, the
32213-dimensional TA(6) (which is the full algebra of actions associated with
T6) is not a Clifford algebra.

Let’s plow ahead anyway, and first look at the 215-dimensional TA(4), iso-
morphic to the complexification of CL(1, 13). This acts on T4, which is a pair
of leptoquark families (and their antifamilies).

Let qLk and qRk, k = 0,1,2,3, be the respective left and right actions of the
basis elements of H on itself. Likewise, eLa and eRa, a = 0,1,...,7, are the same
for the octonions, although in this case, since OL = OR, we will not often be
using the latter elements. Since the complex numbers are commutative and
associative it makes no sense to distinguish left and right actions, so we won’t.

Some 2 × 2 real matrices:

ε =
[

1 0
0 1

]
, α =

[
1 0
0 −1

]
, β =

[
0 1
1 0

]
, γ =

[
0 1

−1 0

]
.

Define, for example, the following 4 × 4 real matrix:

[β ⊗ α] =
[

0 α
α 0

]
.

Here is the chosen CL(1, 13) 1-vector basis:

[ε⊗ β](iqR3), [ε ⊗ γ]qLkeL7(iqR3), k = 1, 2, 3, [ε ⊗ γ]ieLp(iqR3), p = 1, ..., 6,

[β ⊗ ε]qR1, [β ⊗ ε]qR2, [β ⊗ α]qR3, [γ ⊗ α].

The first line contains 10 elements which generate a CL(1, 9) subalgebra of
CL(1, 13). This is essentially the CL(1, 9) that appeared in [2]. The second line
contains 4 elements which generate a CL(0, 4) subalgebra. Under the commuta-
tor product the associated 2-vectors are a basis for so(4) ∼ su(2) × su(2). The
six generators are:

1
2
(1 ± [α ⊗ ε]){[ε⊗ α]qR1, [ε ⊗ α]qR2, [ε ⊗ ε]qR3, }.

The 4 × 4 real matrix [α⊗ε] is the product of the last four 1-vectors above, hence
it commutes with the CL(1, 9) 1-vectors, but anticommutes with the CL(0, 4) 1-
vectors. Therefore it can be used to reduce the 1,13-spacetime to 1,9-spacetime.
In particular, at the 1-vector level,

1
2
(1 ± [α ⊗ ε])CL(1, 13)

1
2
(1 ± [α⊗ ε]) = CL(1, 9)

1
2
(1 ± [α ⊗ ε]).

At the 2-vector level,

1
2
(1 ± [α⊗ ε])so(1, 13)

1
2
(1 ± [α ⊗ ε]) = (so(1, 9) × su(2))

1
2
(1 ± [α ⊗ ε]),
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each projector 1
2 (1 ± [α ⊗ ε]) picking out an su(2) half of so(4), and projecting

from the spinor space, T4, a T2 subspace. Hence this reduction results in exactly
the scenario developed in [2], except doubled. Each T2 subspace is the direct
sum of a family and antifamily of leptons and quarks.

With a Clifford algebra and spinors we can form a Dirac operator and La-
grangian. If there were 2k families then T2k would be the appropriate hyper-
spinor space, acted on by a conventional Clifford algebra. But it is believed there
are exactly 3 families, and we will have to get a little creative in constructing a
Dirac-like Lagrangian for this case.

A Dirac operator for the CL(1, 13) 2-family model developed above would
be [

�∂1,9 �∂+
0,4

�∂−
0,4 �∂1,9

]
,

built from the original set of 14 1-vectors. For the 3-family case, the suggestion
is to incorporate 3 of theses 2-family Dirac operators, leading to a Lagrangian
term like

[
ψ1 ψ2 ψ3

]

 �∂a

1,9+ �∂b
1,9 �∂a+

0,4 �∂b−
0,4

�∂a−
0,4 �∂a

1,9+ �∂c
1,9 �∂c+

0,4

�∂b+
0,4 �∂c−

0,4 �∂b
1,9+ �∂c

1,9





 ψ1

ψ2

ψ3




Each of the ψk, k = 1, 2, 3, is a complete leptoquark family plus antifamily. On
the assumption this approach to a 3-family Lagrangian has some validity many
questions arise. Are these the 3 observed families, or mixtures thereof? Are
there 3 distinct 14-dimensional spaces? There are many more questions, which
my intuition tells me are worth pursuing (no voices - just a gut feeling), but if
this happens, it will do so slowly, as I didn’t really have time to take it even
this far.
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