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The algebra T = C @ H ® O, which provides an exact fit for the
algebraic architecture of the Standard Model of quarks and leptons and
their interactions, is a (real) tensor product of all the division algebras. Yet
in a mathematical sense it is a complex algebra. Any quantum theory built
over T should therefore be complex, and not quaternion or octonion (it
would have to be over some division algebra).

Introduction

The complex algebra, C, is the foundation for analytic function theory and quantum
mechanics. Although many have tried, the quaternion algebra, H, in being noncommu-
tative, and the octonion algebra, O, in being both noncommutative and nonassociative,
are not fit to play the role C plays in mathematics and physics. Yet all three are normed
division algebras, and quantum theories have been built from all three. It seems, how-
ever, that quantum mechanics in our universe is inherently complex.

FEach of these division algebras is also a spinor space with respect to the algebra of
actions of each on itself. I denote these algebras, Ca, Ha, Oa.

Ca
Because C is both commutative and associative,
C A= C,

and it makes little sense to differentiate the two. However, C is 2-dimensional over the
reals, R, so should accept a full R(2) algebra of actions (2 x 2 matrices over R). This
can only be done by augmenting C o with complex conjugation. So in this case Cp is
incomplete: it contains no projection operators that can project from all elements of C
their real parts. C is the end of the line.

Ha

Because H is not commutative, H 4 is algebraically more interesting and less triv-
ial. In being associative the algebras Hy, and Hgy of left and right actions of H on



itself satisfy
HL ~ HR ~H.

Since H is a division algebra, it contains no projection operators other than the identity,
so H is what I call left and right incomplete, since the 4-dimensional H can accept a
16-dimensional set of actions isomorphic to R (4).

But Hy, and Hy are distinct, so Ha , which contains both, is bigger than both,
and is in fact isomorphic to R(4). We can therefore decompose the identity of H
into 4 orthogonal primitive idempotents, one of which can project from any element of
H its real part (and by virtue of that we can also construct an element of Ha which
when operated on any element of H will result in its quaternionic conjugate (an anti-
automorphism)).

Oa

Like H, O is noncommutative, so O » is a bigger algebra than O itself. But because
O is nonassociative, Og, and Og are also bigger than O. In fact,

OL ~ OR ~ OA ~ R(S)

So O is left, right, and in general, complete. But in this case Og and Og are not
distinct: they are the same algebra, and both the same as O 4 .

The identity of O o can be decomposed into 8 orthogonal primitive projection op-
erators, with one of which we can project the real part of any element of O, and twice
that element minus the identity will yield the octonion conjugate.

T A and Interpretation

If you’re reading this, you’re almost certainly familiar with the algebra
T=Ce®H®O,

which I demonstrated at the end of the last century is the mathematical blueprint for
the Standard Model of quarks and leptons. This algebra is not a division algebra, and is
not only noncommutative and nonassociative, it is also nonalternative. The algebra T 4
is isomorphic to C(32) (32 x 32 matrices over C). It is apparent, therefore, that the
identity of T 4 can be decomposed into 32 orthogonal primitive projection operators,
with one of which we can project the complex part of any element of T, but not the
real part.

In each of these 4 cases, the elements of K4 are able to project from the elements
of K a part that is either real or complex, and whichever mathematical field it is de-
termines if the resulting algebra is fundamentally real or complex. This means that in
creating a classical or quantum field theory over any of these spinor algebras, C, H,
O or T, only if its underlying mathematical field is C can we hope to create a model
that is consistent with our reality. I would suggest, therefore, that although quantum



mechanics requires a division algebra, it makes no sense at all to use H or O alone, as

they are functionally real. Tensoring with C renders either of them functionally com-

plex. Tensoring all 3 yields a complex spinor space, allowing a complex quantization,

and providing a framework for all the algebraic features of the Standard Model.
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