
HYPERALGEBRA

GEOFFREY DIXON

gdixon@7stones.com

≺ Last modified: 2011.01.09 �

The octonion algebra is built from a pair of quaternion algebras. Thoughts
on generalizing this to a triple product on a trio of octonion algebras are
presented.

Introduction

The dimensions 2, 8, and 24, are the only known dimensions n for which the n-dimensional
laminated lattices (Λ2 = A2, Λ8 = E8, Λ24 = Leech lattice) simultaneously provide the
tightest sphere packings, give the best kissing numbers, and the kissing spheres lock into
place. Periodicities of orders 2, 8 and 24 occur in the structure of laminated lattices. The
suggestion here is that, like the series of dimensions 2k, k = 0, 1, 2, 3, which yield the
resonant dimensions (in box),

1, 2, 4, 8, 16, 32, ...,

there is another series of dimensions, Fk+12
k, k = 0, 1, 2, 3, which give rise to the geomet-

rically and algebraically resonant dimensions (in box),

1, 2, 8, 24, 160, 512, ...

(Fk is the Fibonacci sequence, 1,1,2,3,5,8,13,21,..., for k = 1,2,3,4,5,6,7,8,.... The use of
Fk as coefficients in this formula for this sequence is a guess, bolstered by the apparent
coincidence that

3∏
1

Fk = 2,
4∏
1

Fk = 6,
6∏
1

Fk = 240,
8∏
1

Fk = 196560/3,

where 2, 6, 240 and 196560 are the respective kissing numbers of the exceptional laminated
lattices, Λ1, Λ2, Λ8, and Λ24.) This goes far to explaining my interest, but this sequence
also fits neatly with some work I put together in theoretical physics [1], in which the space
T6 = C⊗H2 ⊗O3 is used to model three generations of lepto-quark families with all the
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pieces (including righthanded neutrinos) in place. It is my hope that the triple product
being sought here, should it be found, may prove useful in that context.

Among those things of interest arising from the dimensions, 1, 2, 4, 8, are the finite
sequences of parallelizable spheres and the real normed division algebras. But these geo-
metric and algebraic sequences end at dimension 8, so if the dimension 24 is geometrically
and algebraically interesting, it must be so in some new way. As to that, the existence of
the Leech lattice already ensures that dimension 24 is geometrically interesting.

The Other Sequence: Number 8

The other sequence is, 1, 2, 8, 24. We begin with the dimension 8 and the 8-dimensional
space, H2. Ordinarily a basis for H would be represented by elements qm,m = 0, 1, 2, 3,
with q0 the identity, and q1q2 = −q2q1 = q3. Then the rest of the multiplication table
can be obtained by cycling these three indices modulo 3, from 1 to 3. In the case of the
octonions one can construct multiplication tables that are not only invariant under index
cycling, but also index doubling (modulo 7). This quaternion product is not invariant
under index doubling.

However, there are advantages here to using new indices that give up the cycling invari-
ance and replace it with an index doubling invariance. Our new basis is: qm,m = 0, 1, 2, 4,
where now q1q2 = −q2q1 = q4, and these products are invariant with respect to index
doubling, but modulo 7. Schematically this gives rise to this multiplication table:

0 1 2 4

0 0 1 2 4
1 1 −0 4 −2
2 2 −4 −0 1
4 4 2 −1 −0

This multiplication table can be thought of as a map from H×H −→ H.
One can produce a map from

H2 ×H2 −→ H2

that gives H2 an octonionic structure. That is, the map is the octonion product. For
example, using 0, 1, 2, 4, for the indices of the first copy of H in H2, and 0, 1, 2, 4, for the
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second, we produce the mapping

0 1 2 4 7 3 6 5

0 0 1 2 4 0 1 2 4
1 1 −0 4 −2 −1 0 −4 2
2 2 −4 −0 1 −2 4 0 −1
4 4 2 −1 −0 −4 −2 1 0

7 0 1 2 4 −0 −1 −2 −4
3 1 −0 −4 2 1 −0 −4 2
6 2 4 −0 −1 2 4 −0 −1
5 4 −2 1 −0 4 −2 1 −0

where the indices on the outside indicate the correspondence to the ordinary octonion in-
dices (a commonly used index cycling and doubling invariant set).

The Other Sequence: Number 24

The point of this article is the following: generalizing from the above, we now want to
look for a map, Ω, taking

O3 ×O3 ×O3 −→ O3,

the hope being that such a triple product will provide a rich new way to look at 24-space.
The multiplication table is in this case not a square array of symbols, but a 3-dimensional
cubic array of symbols, so not so easily represented.

To begin with, the elements of O3 consist of three copies of the octonions, Ok, k = 0, 1, 2,
and, generalizing from the quaternion double product above, we’ll assume that Ω has the
following broad general action (uk, vk, wk ∈ Ok:

Ω((u0, u1, u2), (v0, v1, v2), (w0, w1, w2)) =

(
∑

i+j+k=0%3 Ω0(ui, vj , wk),
∑

i+j+k=1%3 Ω1(ui, vj , wk),
∑

i+j+k=2%3 Ω2(ui, vj , wk)),

where the Ωk (perhaps not distinct) map O3 −→ O.
In the quaternion case there are four 4 × 4 square arrays of numbers needed to define

the map from H2 ×H2 −→ H2, and each of these arrays is numerically the same, arising
from the quaternion product itself (the signs in each array are different).

Again generalizing from the quaternion case, we assume that each of the 27 cubic 8×8×8
subarrays in this triple product table has the same numbering (different copies of O),
and that this numbering arises from the octonion product itself. So, for example, let
ea, eb, ec ∈ O0, and assume that any product of these three octonions yields another element
ed (to within a sign), then we assume

Ωk(ea, eb, ec) = ±ed,
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and that the same numbering will occur even if we choose three elements from different
copies of Ok, just as occurred in the quaternion case.

At this point it might seem we are 2/3 done with defining the triple product Ω, the
last step being determining the 243 signs in this 24 × 24 × 24 cubic multiplication table.
Unfortunately this is not a trivial task. There are 264 ways to sign the 8 × 8 table we
built for the quaternions, but a much smaller number of those will give rise to the octonion
division algebra. In this new case, there are 213824 ways of signing the 24× 24× 24 cubic
multiplication table we have built to this point. Not even a super computer is going to
help us find those combinations that yield something truly interesting.

However, things are not quite so dire. For one, it is reasonable to assume that this
product, restricted to O0, can be constructed using the octonion product itself (there are
many triple products one can define for O). That being the case, restricting the map Ω to
O0, we should expect that the lowest order 8×8×8 multiplication table cube would be sign
invariant with respect to symmetric permutations of the indices, and the 7×7×7 subcube
of nonzero indices would change sign after an antisymmetric permutation. A symmetric
permutation corresponds to a 120◦ rotation of the multiplication table about the main
3-dimensional diagonal, and the antisymmetric permutation would involve a reflection.

Generalizing from the quaternion case developed above it is going to be assumed here
that the 23× 23× 23 subcube of signs from the entire multiplication table will share these
same symmetry properties with respect to the same rotations and reflections.

Further, and again generalizing from the quaternion case, the assumption is going to be
made here that this sort of thing will be valid for each of the 27 7× 7× 7 subcubes.

So, for example, let xa be a basis for O0, ya for O1, and za for O2, then we expect, for
example, that (7× 7× 7 rule; indices a, b, c nonzero)

Ωk(xa, yb, zc) = Ωk(xc, ya, zb) = −Ωk(xb, ya, zc),

and that (23× 23× 23 rule; index of O0 unit x nonzero)

Ωk(xa, yb, zc) = Ωk(za, xb, yc) = −Ωk(ya, xb, zc).

At this point I’d better stop and spend some time making sure these 7 × 7 × 7 and
23× 23× 23 suppositions are consistent. My suspicion is that if this whole idea is viable,
the nonassociativity of O will need to be dealt with in some novel way.

Galois Ternary Systems

I’ll preface this section with a confession - if it is even necessary. At the time of this
writing, the path to my destination is much less clear than the destination itself. So most
of what I have written, and am about to write, is part of an evolving whole, and some bits
may ultimately not be fit enough to survive. Also, my interest in ternary systems is recent,
and even a cursory web search makes it clear that in the last decade or two interest in such
systems has grown quite a bit, even in mainstream physics.

A problem with ternary multiplication systems is it is hard not to think of their being
built from binary systems, like the octonionic associator, (xy)z−x(yz). However, it is not



HYPERALGEBRA 5

difficult to construct sets that close under a ternary operation but not binary, and that is
what I am looking for in a ternary product for 24-space. An example is in order, first for
just 4-space over Z2.

In [3] and elsewhere I looked at generating the division algebras from 2, 4 and 8-
dimensional vectors over Z2, related to Hadamard matrices [4]. For example, consider
the four binary strings:

q0 = [0, 0, 0, 0],
q1 = [0, 1, 0, 1],
q2 = [0, 1, 1, 0],
q3 = [0, 0, 1, 1].

Let +2 denote the binary addition of such strings (0+2 0 = 1+2 1 = 0 and 0+2 1 = 1+2 0 =
1). Then, for example,

q1 +2 q2 = [0 +2 0, 1 +2 1, 0 +2 1, 1 +2 0] = q3.

The set of qk closes under the +2 operation, and we can carry on and make of the set
a full-fledged quaternion algebra basis, where the 1’s and 0’s are used to determine the
signs of quaternion products (i.e., the binary addition is used to derive a real quaternion
product).

Now consider the set

t0 = [1, 1, 0, 0],
t1 = [0, 1, 1, 0],
t2 = [0, 0, 1, 1],
t3 = [1, 0, 0, 1].

This set does not close under the +2 operation, at least when the operation is performed
on pairs of the elements tk, but it does close on triples. For all i, j, k ∈ {0, 1, 2, 3}, there
exists m ∈ {0, 1, 2, 3} such that

< i, j, k >:= ti +2 tj +2 tk = tm.

Clearly in holding one of the three indices fixed we can construct binary operations from
this ternary operation. For example, define

< j, k >i=< i, j, k >,

i fixed. It doesn’t make sense to refer to an identity of the triple operation < i, j, k >,
but the binary operation < j, k >i does have an identity, which is just ti itself. So the
identity changes depending on which element we fix to achieve our binary operation. And
presumably (although I will not pursue this here), in the same way we can achieve the
quaternion algebra from the qi, we can turn < i, j, k > into a full-fledged real triple algebra.

This < i, j, k > ternary system has exactly the properties I feel are necessary. In partic-
ular, it is fundamental. The ti close only if three elements are included in the +2 operation,
and although binary operations can be constructed secondarily, the ternary operation is
primary.
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Another such 4-some can be obtained from the first by adding u = [1, 1, 1, 1] to each
4-some, yielding

p0 = [1, 1, 1, 1],
p1 = [1, 0, 1, 0],
p2 = [1, 0, 0, 1],
p3 = [1, 1, 0, 0].

Since u +2 u +2 u = u, and pk = qk +2 u, and the collection of qk is closed under the +2

(even as a ternary operation), the collection of pk will close under the operation x+2 y+2 z
(ternary), but not x+2 y.

We can take this further. The elements

e0 = [0, 0, 0, 0, 0, 0, 0, 0],
e1 = [0, 1, 1, 1, 0, 1, 0, 0],
e2 = [0, 0, 1, 1, 1, 0, 1, 0],
e3 = [0, 0, 0, 1, 1, 1, 0, 1],
e4 = [0, 1, 0, 0, 1, 1, 1, 0],
e5 = [0, 0, 1, 0, 0, 1, 1, 1],
e6 = [0, 1, 0, 1, 0, 0, 1, 1],
e7 = [0, 1, 1, 0, 1, 0, 0, 1],

can be used to generate the octonion algebra. This set closes under the +2 binary operation,
but the set of ea+v, where v = [1, 1, 1, 1, 1, 1, 1, 1], does not, although it does when applied
as a ternary operation.

One can carry on with these ideas, generalizing to Galois fields GF (pn) for primes p > 2.
We may come back to that idea.

Some Division Algebra Ternary Systems

Now let

{e0, e1, ..., e7}
be a basis for O, where we’ll use the cyclic multiplication determined by

e1e2 = e4.

That is, the set {e0, e1, e2, e4} generates a subalgebra of O isomorphic to H. This set is
closed under ordinary binary multiplication. However, the set of basis elements left over,

{e3, e5, e6, e7},

is not closed with respect to binary multiplication, but is with respect to ternary, but
because of nonassociativity we have to specify what we mean by that. Specifically, this
set closes under both ternary products (xy)z and x(yz), which are not equivalent. The
automorphism group of this 4-dimensional subset of O, with one of these ternary products,
is at least SU(2), the subalgebra of G2 leaving a quaternionic subalgebra of O invariant.

We can also modify O with parts of C and/or H. For example, the set iO (each element
of O multiplied by the complex imaginary i) is not closed under the usual binary product,
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but is closed under either of the principal ternary products: (xy)z and x(yz). This is also
true of the set spanned by {iem,m = 0, 1, 2, 4, ek, k = 3, 5, 6, 7}, which is i times the split
octonions. Many more examples can be concocted by introducing quaternions into the mix.

Arrays

In [3] I outlined the notion of a nilpotent Clifford algebra, which can be defined for
both pseudo-orthogonal and symplectic bilinear forms. Ordinary Clifford algebras connect
to the underlying form via a bilinear anticommutator product on the generators which is
linear in the algebra identity. Nilpotent Clifford algebras use a ternary product on the
generators, which is linear in these same generators, so the set of generators is closed under
this ternary product. Of course, one can also multiply the associated matrices in pairs.

Inspired by work in [5] I more recently began to look at expanding on the notion of
n× n matrix algebras, to arrays with more indices. In particular, let

A(m, j,K) = set of m×m× ...×m (mj) arrays over K,

where K is a field or division algebra (or other algebraic set - more on this below).
Let’s start by looking at the 27 = 33-dimensional set, A(3, 3,R). Let A,B,C be elements

of this set. We require 3 indices taking values in the set {0, 1, 2} to specify the 27 real
components of each of these cubic arrays. Generalizing from the A(m, 2,R) case of m×m
real matrices, for which we can define a binary product (matrix multiplication), we define
the following ternary product (: A,B,C :) on A(3, 3,R):

Dabc =
∑
ijk

AaijBibkCjkc,

where D = : A,B,C : is clearly also an element of A(3, 3,R). This is a true ternary
product, not based on an underlying binary product (other than the multiplication of real
numbers). (Note: in the m2 case we define the product by summing over a single repeated
index. In this m3 case we have 3 repeated indices. The m4 case requires 6. You can see
where this is going.)

For all positive integers m, A(m, 2,R) is the set of m×m real matrices. A complete basis
for these can be given in terms of symmetric and antisymmetric matrices (with respect to
a simple permutation of indices). Things are not so simple in A(m, j,R), j > 2. For
example, look at the simplest example, A(2, 3,R). This is an 8-dimensional space of cube
arrays. A has 8 components Aijk, where each index takes values 0 or 1. Therefore at least
two of them are equal, so there are no nontrivial elements A such that Aρ(ijk) = −Aijk for
all indices i, j, k, and for all odd (or even) permutations ρ on the indices.

In A(3, 3,R) there is a 1-dimensional subspace of the full 27-dimensional space the
elements of which are antisymmetric with respect to all odd permutations on the indices.
Here is a basis:

Sijk = 1, (ijk) = (012), (201), (120), Sijk = −1, (ijk) = (210), (021), (102),
Sijk = 0 otherwise.
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This element satisfies
: S, S, S : = −S.

Let V denote the 6-dimensional subspace of A(3, 3,R) consisting of those elements
B ∈ A(3, 3,R) with zero entries except where the indices are distinct. That is, Bijk 6= 0
implies [i : j : k] is a permutation of [0 : 1 : 2]. Therefore, the element S defined above is
in V, and we showed that the 1-dimensional subspace spanned by S is a subalgebra of the
27-dimensional trilinear algebra A(3, 3,R).

As it turns out, 6-dimensional V is also a subalgebra of A(3, 3,R). Let A,B,C ∈ V, and
D = : A,B,C :. That is, Dabc =

∑
ijk AaijBibkCjkc. A ∈ V implies the indices a, i, j must

be distinct for the righthand side to be potentially nonzero. Likewise, B ∈ V implies the
indices ibk must be distinct, and C ∈ V implies the indices j, k, c must be distinct. Ok, so
b 6= i =⇒ b = a or b = j (there are only 3 indices to choose from). If b = a, then k = j,
which implies Cjkc = 0, therefore

b = j.

Bibk = Bijk can only be nonzero if
a = k.

And finally, Cjkc = Cjak can be nonzero only if

c = i.

Consequently a, b, c are necessarily distinct, and each of the 6 possible nonzero components
of D arises from a single product of potentially nonzero components of A, B, and C.
Specifically,

D012 = A021B210C102,
D201 = A210B102C021,
D120 = A102B021C210,
D210 = A201B012C120,
D021 = A012B120C201,
D102 = A120B201C012.

Note that if Dabc 6= 0 and a : b : c is a symmetric (antisymmetric) permutation of 0 : 1 : 2,
then

Dabc = AacbBcbaCbac,

where the respective indices of the components of A, B, and C are antisymmetric (symmet-
ric) permutations of 0 : 1 : 2. So V is a ternary subalgebra of A(3, 3,R), and the subspace
of V spanned by the single element S is a 1-dimensional ternary subalgebra of V. Finally,
define

Rijk = 1, (ijk) = (012), (201), (120), (210), (021), (102),
Rijk = 0 otherwise.

Then the subspace spanned by R and S is a 2-dimensional ternary subalgebra of V.
The supposition to this point has been that the 27 components of these ternary algebras

have real coefficients. They could also be elements of C, or H (yielding a 24-dimensional
ternary algebra starting from V), or O, although in the latter case we have to introduce
parentheses to account for the nonassociativity of O. But the K in A(3, 3,K) need not be
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a binary algebra at all. A simple example of this is A(3, 3, I), where I is the set of all real
multiples of the complex unit i. A(3, 3, I) also closes under our ternary matrix product,
since i3 = −i.

And in closing, for the time being, there are any number of 4-dimensional selections for
K that would yield 24-dimensional ternary algebras when we start with the 6-dimensional
V. It is not known at this point if the Leech lattice could be represented over this space in
such a way it would close under the associated ternary product.

≺ Last modified: 2011.01.09 �

References:

[1] G.M. Dixon, J. Math. Phys. 45, 3878 (2004)

[2] G.M. Dixon, http://www.7stones.com

[3] G.M. Dixon, Division Algebras: Octonions, Quaternions, Complex Numbers, and
the Algebraic Design of Physics, (Kluwer, 1994 (now Springer-Verlag)).

[4] J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices and Groups, (Springer-Verlag,
2nd Ed., 1991).

[5] A. Dubrovski, V. Guennadi, Ternary Numbers and Algebras, arXiv:hep-th/0608073v3.
John Baez, The octonions, Bull. Amer. Math. Soc. 39 (2002), 145-205


