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An algebraic reduction of 10-d Dirac spinors to 4-d Dirac spinors
yields a concomitant reduction of so(1, 9) to so(1, 3) × u(1) × su(3)
and lepton-quark family structure. This mathematical result is based
on division algebra theory (the internal su(2) arises from the math-
ematics).

Introduction

The background to this work is developed in elaborate detail in [1], and
it will be presented here only schematically. It revolves around the division
algebras, their real tensor products, and the algebras of left and right actions
of such algebras on themselves. Some familiarity with division algebra theory
is assumed. My notation, and some facts, are listed below:

• O - octonions: nonassociative, noncommutative, basis {1 = e0, e1, ..., e7}
(in [1] one of a pair of natural symmetric octonion multiplication tables
was employed; bowing to the prevailing winds, in this paper the other
more commonly used table is employed, one for which {ea, ea+1, ea+3} is
a quaternionic triple, a = 1,...,7, indices modulo 7, from 1 to 7);

• Q - quaternions: associative, noncommutative, basis {1 = q0, q1, q2, q3};

• C - complex numbers: associative, commutative, basis {1, i};

• R - real numbers.

• KL, KR - the algebras of left and right actions of an algebra K on itself.

• K(2) - 2x2 matrices over the algebra K (to be identified with Clifford
algebras);

• CL(p, q) - the Clifford algebra of the real spacetime with signature (p+,q-);

• 2K - 2x1 matrices over the algebra K (to be identified with spinor spaces);

• OL and OR are identical, isomorphic to R(8) (8x8 real matrices),
64-dimensional bases are of the form 1, eLa, eLab, eLabc, or 1, eRa, eRab, eRabc,
where, for example, if x ∈ O, then eLab[x] ≡ ea(ebx), and eRab[x] ≡
(xea)eb (see [1]);
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• QL and QR are distinct, both isomorphic to Q, bases
{1 = qL0, qL1, qL2, qL3} and {1 = qR0, qR1, qR2, qR3};

• CL and CR are identical, both isomorphic to C (so we only need use C
itself);

• P = C⊗ Q, 8-dimensional;

• PL = CL ⊗QL, isomorphic to C(2) � CL(3, 0) � C ⊗ CL(0, 2) (P is the
spinor space of PL, consisting of a pair of Pauli spinors; the doubling is
due to the internal action of QR, which commutes with PL actions);

• T = C ⊗ Q⊗O, 64-dimensional;

• TL = CL ⊗QL ⊗OL, isomorphic to C(16) � CL(0, 9) � C⊗CL(0, 8) (as
was the case with P, the algebra T is the spinor space of TL, its dimension
twice what is expected due to the internal action of QR, the only part of
TR missing from TL);

• PL(2) � C(4) � C ⊗ CL(1, 3), the Dirac algebra of (1,3)-spacetime (the
major difference being that the spinor space, 2P, contains an extra internal
SU(2) degree of freedom associated with QR);

• TL(2) � C(32) � C ⊗ CL(1, 9), the Dirac algebra of (1,9)-spacetime
(spinor space 2T; one internal SU(2)).

Some Lie algebras and their bases:

• so(7) - {eLab: a,b = 1,...,7};

• so(6) - {eLpq : p,q = 1,...,6};

• LG2 - {eLab − eLcd: eaeb − eced = 0, a,b,c,d = 1,...,7};

• LG2 explicitly (LG2 is the 14-d Lie algebra of G2, the automorphism
group of O):

eL24 − eL56, eL56 − eL37;
eL35 − eL67, eL67 − eL41;
eL46 − eL71, eL71 − eL52;
eL57 − eL12, eL12 − eL63;
eL61 − eL23, eL23 − eL74;
eL72 − eL34, eL34 − eL15;
eL13 − eL45, eL45 − eL26;

• su(3) - {eLpq − eLmn: epeq − emen = 0, p,q,m,n = 1,...,6}.
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Derivation

In general, the subgroup of G2 leaving some imaginary octonion direction
invariant is a copy of SU(3). The su(3) Lie algebra above generates an SU(3)
leaving e7 invariant, a conventional choice for color SU(3). In this case, the
projection operators,

ρ± =
1
2
(1 ± ie7); ρL± =

1
2
(1 ± ieL7); ρR± =

1
2
(1 ± ieR7); (1)

(note that ρ2
± = ρ±, ρ+ρ− = 0; ρ+ + ρ− = 1) can be used to reduce the spinor

space 2T into its SU(3) multiplets:

ρ+(2T)ρ+ = ρL+ρR+[2T] = singlet (1);
ρ+(2T)ρ− = ρL+ρR−[2T] = triplet (3);
ρ−(2T)ρ+ = ρL−ρR+[2T] = antitriplet (3̄);
ρ−(2T)ρ− = ρL−ρR−[2T] = antisinglet (1̄).

Recall that 2T is an SU(2) doublet of (1,9)-Dirac spinors, and we see that each
(1,9)-Dirac spinor resolves to 1 ⊕ 3 ⊕ 3̄ ⊕ 1̄ with respect to the chosen SU(3),
each SU(3) vector a doublet of (1,3)-Dirac spinors.

In particular the singlet,

ρ+(2T)ρ+ = ρL+ρR+[2T],

is an SU(2) doublet of (1,3)-Dirac spinors. That is, the projection operator
ρL+ρR+ reduces (1,9)-Dirac spinors to (1,3)-Dirac spinors. The question is:

What effect does the corresponding action have on
the (1,9)-Dirac algebra which acts on the spinors?

My way of addressing this problem is to give the (1,9)-Dirac algebra, TL(2),
an explicit representation, and then apply the action. And in particular, if
the spinor action is 2T −→ ρL+ρR+[2T], then the corresponding action on the
(1,9)-Dirac algebra is:

TL(2) −→ ρR+ρL+TL(2)ρL+ρR+ (2)

(note: the projection operators ρ± are Hermitian).
Let α, β, γ, be anticommuting matrices in R(2) satisfying,

α2 = β2 = −γ2 = ε, (3)

where ε is the R(2) identity matrix. I’ll use the following representation for the
(1,9)-Dirac 1-vectors (the final result is representation independent):

{β, eL7qLkγ, ieLpγ : k = 1, 2, 3, p = 1, ..., 6}. (4)
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Note:

ρL±eL7ρL± = eL7ρL±ρL± = eL7ρL± = ∓iρL±;
ρL±eLpρL± = eLpρL∓ρL± = 0.

Therefore, the action (2) on the 1-vectors (4) is:

(1,9)-Dirac 1-vectors −→ {β,−iqLkγ}ρL+ρR+ (5)

(the ρR+ play no part in the 1-vector reduction). What’s left is a basis for a
representation of (1,3)-Dirac 1-vectors.

The ρL+ρR+ that survive the reduction imply that
this set of operators acts only on the SU(3) singlet.
Each of the spinor reductions, ρL±ρR±[2T], gives rise
to the same reduction on the (1,9)-Dirac algebra,
save for signs, which may be associated with charges,
and the presence of ρL±ρR± surviving the reduction.
These operators associate the reduction with the
corresponding SU(3) multiplet, and in fact the
reduced algebra kills all multiplets but that with
it is associated.

The 2-vector basis arising from the 1-vector basis above is:

{eL7qLkα, ieLpα, qLkε (so(3)), eLpq (so(6)), iqLkeLp7ε, p, q = 1, ..., 6}. (6)

The space of 2-vectors is closed under the commutator product and isomor-
phic to the Lie algebra so(1, 9), the (1,9)-Lorentz group. Some subalgebras are
indicated.

The first step in the reduction is finding ρL+(so(1, 9))ρL+. Using results like
those at the top of this page we find

ρL+(so(1, 9))ρL+ −→ {−iqLkα, qLkε, eLpqε}ρL+. (7)

The result is so(1, 3) × so(6), and significantly the result is not just so(1, 3),
which is all that would arise from anticommutators of the reduced 1-vectors.
Ths so(6) is extra.

Finally we bracket this result with ρR+. This projector commutes with the
so(1, 3) part, so it leaves it unaltered (although introducing a ρR+ into the
result). So in particular we need to look at

ρR+eLpqρR+ . (8)

We’ll look at some examples, with epeq �= e7, then epeq = e7, which will give
us the general result. Consider ρR+eL12ρR+. Because ρL+ commutes with
eLpq , p, q �= 7, ρL+eLpqρL+ = ρL+eLpq. But ρR+ does not commute with these
eLpq . To see what it does we’ll re-express our chosen element eL12 as
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eL12 =
1
2
(−eR12 + eR4 + eR63 + eR57) (9)

(see [1]). ρR+ commutes with eR12 and eR63, but becomes ρR− when commuted
with eR4 and eR57 (recall: ρR+ρR− = 0). Therefore,

ρR+eL12ρR+ =
1
2
ρR+(−eR12 + eR63) =

1
2
ρR+(eL12 − eL63) (10)

(see [1] for the last equality).
Finally we need to look at the three terms eLpq for which epeq = e7. These

can be re-expressed:

eL13 = 1
2
(−eR13 + eR7 + eR26 + eR45),

eL26 = 1
2
(+eR13 + eR7 − eR26 + eR45),

eL45 = 1
2
(+eR13 + eR7 + eR26 − eR45).

(11)

All terms in (12) commute with ρR+ , so

ρR+{eL13, eL26, eL45}ρR+ = ρR+{eL13, eL26, eL45}. (12)

Another basis for the space spanned by the set ρR+{eL13, eL26, eL45} is:

ρR+{eL13 − eL26, eL26 − eL45, eL13 + eL26 + eL45}. (13)

But eR7 = 1
2 (−eL7 + eL13 + eR26 + eR45), so

eL13 + eL26 + eL45 = eL7 + 2eR7, (14)

which commutes with all the other surviving elements, and therefore generates
a copy of U(1). The remaining 8 elements are a basis for su(3).

The central result of this paper is:

ρR+ρL+so(1, 9)ρL+ρR+ = (so(1, 3) × u(1) × su(3))ρL+ρR+ (15)

(note: the u(1) charges are tied to the su(3) charges).

We get essentially the same thing if we replace ρL+ρR+ by any combination
ρL±ρR±. Let’s look at the u(1)’s. Using eL7ρL± = ∓iρL±, and eR7ρR± =
∓iρR± , we find

(lepton) 1
3
(eL7 + 2eR7)ρL+ρR+ = 1

3
(−i − 2i)ρL+ρR+ = −iρL+ρR+;

(quark) 1
3
(eL7 + 2eR7)ρL+ρR− = 1

3
(−i + 2i)ρL+ρR+ = 1

3
iρL+ρR+;

(antiquark) 1
3
(eL7 + 2eR7)ρL−ρR+ = 1

3
(i − 2i)ρL+ρR+ = −1

3
iρL+ρR+;

(antilepton) 1
3
(eL7 + 2eR7)ρL−ρR− = 1

3
(i + 2i)ρL+ρR+ = iρL+ρR+

(16)
(factor 1

3
thrown in to align values with observed hypercharges and conventional

su(3) charges). We see that the u(1) charges are linked to the su(3) multiplets.
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So each of these projections gives fundamentally the same result:

so(1, 9) × su(2) −→ so(1, 3) × (u(1) × su(2) × su(3)) (17)

(I’ve included the su(2) arising from QR). The differences are manifested in the
multiplet structure of the projected spinors, the charges, and the orientation
of 3-space (matter and antimatter are inverted). Note that u(1) × su(3) is a
subalgebra of so(1, 9) but commutes with so(1, 3), so it is an internal symmetry;
su(2) stands alone in all cases.

Speaking of su(2), the reduced spinors are su(2) doublets. Additional pro-
jection operators can project from these their individual su(2) components.
This reduces su(2) to u(1), which in combination with the u(1) we already have
leaves us with the u(1) associated with electric charge. See [1] for details.
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